
Payara Server 4 to 5
Migration Guide

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. User Guide

Payara Server 4 to 5 Migration Guide

Contents

Introduction 1

Main Advantages of Payara Server 5 2

Clustering and High Availability Improvements 2

Cloud Deployment Improvements 3

Migration Process 4

Preparation 4

Migrating a Domain from Payara Server 4 using Backup and Restore 4

Additional Considerations for Nodes and Instances 5

Special Considerations for Payara Server 5.201 6

Clustering and High-Availability 8

Summary of Clustering Options in Payara Server 4 8

Domain Data Grid in Payara Server 5 9

Deployment Groups in Payara Server 5 10

Standalone Instances 11

Summary of Clustering Options in Payara Server 5 12

Keeping a Standard Payara Server 4 Cluster 13

Migrate to Deployment Groups 14

Migrating from a Standard Payara Server 4 Cluster to a Deployment Group 14

Migrating from a Hazelcast Cluster of Standalone Instances to the Domain Data Grid 16

Keeping a Cluster of Payara Micro Instances 17

Keeping a Hybrid Cluster of Payara Server and Payara Micro Instances 17

Mapping Between JSON and Java Objects 19

Description of the Changes in JSON Mapping 19

Migrating from JAX-B Mappings to JSON-B Mappings 19

Keep Using JAX-B Mapping for JSON in Payara Server 5 21

Keep Using Jackson 2 Library for JSON Mappings in Payara Server 5 21

Built-in Databases 23

Description of the Changes in Built-in Databases 23

H2 Database 24

Payara Server 4 to 5 Migration Guide

Derby Database 24

Keeping the Data Source Configuration from Payara Server 4 24

Migrating to the New Data Source Configuration in Payara Server 5 24

HTTP/2 Protocol Support 27

Changes Related to HTTP/2 Protocol 27

Keeping HTTP 1.1 Protocol for All Listeners 27

Known Issues After Migrating 29

Conclusion 30

Where to Get More Migration Help 30

Get Payara Platform Enterprise	 31

Payara Server 4 to 5 Migration Guide

1

Introduction

Payara Server 5 was introduced at the beginning of 2018 as the next major version of Payara Server.
Payara Server 4 was derived from the GlassFish Open Source Edition 4.1 and was the recommended
option for many users looking for a drop-in replacement for their GlassFish server installations.
Constant feedback from our customers and the community about the user experience of our product
has led our evolution of Payara Server to meet user expectations. We have concluded that, although
Payara Server 4 is a reliable option in the market for both developers and operation staff, there is
room to implement improvements and changes to leverage the productivity levels required by the
current environment. Thus Payara Server 5, which is derived from GlassFish Server Open Source
Edition 5, will deviate some of its features and internal mechanisms from the ones implemented on
GlassFish to offer the productivity and functionality that our user base really needs. As such, Payara
Server 5 targets the following goals:

•	 Cloud and container friendly

•	 Compatible with modern Java APIs

•	 Reduce the dependency on legacy components and/or third-party libraries

•	 Improve the general performance and quality of deployed applications

•	 Provide top-level security and monitoring features

The purpose of this guide is to help you prepare and understand the main challenges you may face
when migrating from Payara Server 4 to Payara Server 5. Be sure to understand this entire document
before planning the migration in your projects to have a better understanding of which steps to take
in your particular case. Payara Server Enterprise or Payara Micro Enterprise customers can submit
support tickets with migration questions for assistance, or should you want more hands-on guidance
through the migration process, take a look at our upgrade service as part of our Payara Accelerator
consultancy. If you’re using the community version of Payara Server or Payara Micro, we invite you
to take a look at our production-ready, fully supported options, Payara Enterprise, which gives you
access to a choice of support included in your subscription: Migration & Project Support, 24x7, 10x5.

https://info.payara.fish/upgrade-data-sheet?hsCtaTracking=eebaa3c5-29fb-4fcd-9af1-a16935252492%7Ce93574ed-cd35-4b2e-bf7c-e86a5bafa9c2
https://info.payara.fish/upgrade-data-sheet?hsCtaTracking=eebaa3c5-29fb-4fcd-9af1-a16935252492%7Ce93574ed-cd35-4b2e-bf7c-e86a5bafa9c2

Payara Server 4 to 5 Migration Guide

2

Main Advantages of Payara Server 5

Clustering and High Availability Improvements
High availability is a concept familiar to most developers and server administrators. For mission-crit-
ical or high-performance applications and services it is imperative to coordinate a high-availability
strategy so that the business is not affected in case of failure or high load. Payara Server comes
equipped with the concept of a Domain Data Grid which has the following responsibilities:

•	 Share the data across all of the instances in the domain and replicate such data in case of
fail-over

•	 Provide a centralized configuration for all instances in the domain

On top of the Domain Data Grid, applications and resources can be assigned to multiple groups
called Deployment Groups. These provide the following features:

•	 Function as a deployment “target”, meaning applications and resources deployed to a
deployment group are deployed automatically to all instances in the group

•	 Allow controlling of multiple instances in the domain with a single action (e.g. start/stop all
instances in the group

This leads to better integration of Hazelcast into high availability services and easier configuration
of the Hazelcast based cluster. It also provides a lot more flexible clustering options; it enables an
easy way to combine options for dynamic formation of a cluster suitable in scalable environments
with allowing more control over instances and deployments via Deployment Groups.

The Domain Data Grid can be compared to clustering with Hazelcast in Payara Server 4, and
Deployment Groups are similar to clusters in Payara Server 4. However, Deployment Groups are
built on top of the Domain Data Grid and thus are powered by Hazelcast, unlike clusters in Payara
Server 4, which are based on a technology called Shoal (or GMS) which has been completely removed
in Payara Server 5. The configuration and administration commands for clusters in Payara Server 4
are still supported by Payara Server 5 so that it’s easy to migrate them, but clusters in Payara Server
5 created and managed this way run on the same technology as Domain Data Grid and behave as
any other Deployment Group as the older Shoal Clusters are deprecated and not used by default for
new clustering configurations. Deployment Groups and their associated administration commands
provide a complete replacement.

Payara Server 4 to 5 Migration Guide

3

Cloud Deployment Improvements
One of the main disadvantages of Payara Server 4 is that while Hazelcast clustering features are
provided in addition to the traditional clustering model provided by Shoal, the Hazelcast clustering
features are not user-friendly to use in common cloud deployment scenarios, especially in environ-
ments where container technologies form the backbone of the topology (like Docker or Kubernetes,
for example). Payara Server 5 includes several improvements in the form of better clustering inte-
gration with cloud environments and friendlier configuration options that cover most common use
cases in cloud environments. Example of discovery modes provided by the Domain Data Grid include:

•	 TCPIP: Discovering instances that live in a list of hosts identified by their IPv4 or IPv6 net-
work addresses

•	 DNS: Discovering instances that live in a list of hosts identified by host name

•	 Multicast: Allowing instances to “talk” to the cluster by using the multicast protocol and
join it themselves

•	 Kubernetes: Discovering instances that live in hosts within a Kubernetes cluster

One important feature to discuss when mentioning cloud environments is elasticity, which is the
capability of a cloud-environment to scale-up or down depending on the expected user load (and
other factors). Elasticity is one of the main draws of most cloud environments, and the Domain Data
Grid is equipped to allow elastic arrangements on most of these cloud environments. An important
thing to consider when developing an elastic arrangement with the Payara Platform, is that by default
both Payara Server and Payara Micro support elastic clustering via the Domain Data Grid.

Payara Server also supports grouped deployments but grouped deployments do not support elasticity
since a deployment group targets a specific set of instances that have to be centrally configured. Such
deployment groups are therefore more suitable as a replacement for a traditional centrally managed
clustering (more information on how to use the Domain Data Grid and Deployment Groups will be
provided in the following sections). Payara Micro on the other hand does not support the deployment
group concept; the life cycle of any deployed application is tied to the life cycle of the instance itself.
This is a design choice because Payara Micro is built specifically for elastic cloud environments.

Payara Server 4 to 5 Migration Guide

4

Migration Process

Preparation
Payara Server 5 requires the use of JDK 8 at the very least. If your Payara Server 4 domains are cur-
rently running on JDK 7, you will have to update your JDK installations before starting the migration.

You also have to keep in mind that:

•	 Payara Server 5 supports Java/Jakarta EE 8 applications. When migrating your Payara
Server 4 installation, you must be careful if your application uses JSON serialization of Java
objects, since Java EE 8 includes the new JSON-B API which might break your existing
applications. Additionally, there is a new iteration of the Servlet API (4.0) that introduces
HTTP/2 support. More information about these two topics are explained in the follow-
ing sections.

•	 Payara Server 5 also supports MicroProfile, however, the MicroProfile APIs are in constant
change so the version of Payara Server 5 that you are migrating may use a newer version
of one of its APIs (like Metrics), which can introduce breaking changes. It is recommended
that you check which APIs are affected and refactor the application’s code to use the
newer APIs.

Migrating a Domain from Payara Server 4 using Backup and Restore
One of the recommended strategies that you can use to migrate your working Payara Server 4 domain
to Payara Server 5 is execute a backup of this domain and then restore it under Payara Server 5.
Keep in mind that this strategy will import your current configuration as it is into Payara Server 5, so
in order to use the new features included (like the Domain Data Grid, H2 database, HTTP/2 protocol,
etc.) you will have to implement specific configuration changes mentioned in the following sections.

Follow these steps to implement this strategy on your environment:

1.	 First, you need to stop the running Payara Server 4 domain. The domain backup process will
only work when the domain in question is not running, so you will have to schedule a period
of downtime for your current Payara Server 4 production domain.

2.	 Run the backup-domain asadmin command and specify the path to a directory where a
compressed file holding the domain backup will be stored:

asadmin> backup-domain --backupDir <path-to-backup-directory> <domain-name>

The resulting compressed file will then be stored in this location:

Payara Server 4 to 5 Migration Guide

5

<path-to-backup-directory>/<domain-name>/<domain-name>_<yyyy_mm_dd>_v<backup_

number>.zip

Where the backup_number placeholder represents a consecutive integer that counts the current
number of backup operations executed on the domain.

3.	 With the domain fully backed-up, you can now proceed to restore it under your new Payara
Server 5 installation. Run the following command:

asadmin> restore-domain --filename <path-to-backup-directory>/<domain-

name>/<domain-name>_<yyyy_mm_dd>_v<backup_number>.zip --long <domain-name>

The command should print out a detailed report of the restoration outcome:

Restored the domain (<domain-name>) to /opt/payara5/184/glassfish/

domains/<domain-name>

Description : <domain-name> backup created on <yyyy_mm_dd> by

user <username>

GlassFish Version : Payara Server 5.184 #badassfish (build 24)

Backup User : <username>

Backup Date : <backup-timestamp>

Domain Name : <domain-name>

Backup Type : full

Backup Config Name :

Backup Filename (origin) : <path-to-backup-directory>/<domain-name>/<domain-

name>_<yyyy_mm_dd>_v<backup_number>.zip

Domain Directory : /opt/payara5/184/glassfish/domains/<domain-name>

Command restore-domain executed successfully.

4.	 And finally, proceed to start the restored domain!

Additional Considerations for Nodes and Instances

If your domain configuration includes the definitions of instances that live in separate nodes, you
must consider the following set of recommendations in order for the domain to be fully workable
when restored:

Payara Server 4 to 5 Migration Guide

6

1.	 You will have to do a manual installation of the Payara Server 5 binary files in the same
locations as they are defined in the domain configuration. Keep in mind that you will have
to replace the Payara Server 4 binaries in that case, which means that you must forego
your working Payara Server 4 domain. This could be a problem if you want to revert your
Payara Server 5 installation and go back to Payara Server 4, so to prevent that it’s best that
you change the installation directory in the remote hosts. Change this configuration on the
Admin Console before starting the remote instances:

2.	 You will have to re-synchronize the creation and association of these instances to the DAS.
In order to do this, you will have to manually start the instances in each of the nodes (be
them local or remote nodes) configured within the domain. When starting these instances,
set the --sync argument to full so that each instance is re-created successfully:

asadmin> start-local-instance --sync=full <instance-name>

Special Considerations for Payara Server 5.201

Payara Server 5.x, in its release 5.184 introduced a set of specific requirements on the JDK 8 update
needed to run the server were included out of necessity in order to circumvent changes needed by
several SSL related classes that are included with the Grizzly NPN framework. This framework pro-
visions the HTTP/2 protocol for the Web Container, and depending on the version of the framework,
there are exact requirements for the version of JDK being used as well. If an incompatible JDK 8
update is being used with Payara Server 5, the server’s startup will be affected. The best way to solve
this (and future compatibility issues) is to manually update the domain configuration of the server:

Payara Server 4 to 5 Migration Guide

7

1.  Open your domain configuration file (domain.xml) and locate the following JVM argument
setting in the server-config configuration tree:

<java-config classpath-suffix="" debug-options="-agentlib:jdwp=transport=dt_

socket,server=y,suspend=n,address=9009" system-classpath="">

 <!-- ... -->

 <jvm-options>-Xbootclasspath/p:${com.sun.aas.installRoot}/lib/grizzly-npn-

bootstrap.jar</jvm-options>

 <!-- ... -->

</java-config>

2.  Replace the JVM setting with the following new set of elements:

<java-config classpath-suffix="" debug-options="-agentlib:jdwp=transport=dt_

socket,server=y,suspend=n,address=9009" system-classpath="">

 <!-- ... -->

 <jvm-options>[1.8.0|1.8.0u120]-Xbootclasspath/p:${com.sun.aas.installRoot}/

lib/grizzly-npn-bootstrap-1.6.jar</jvm-options>

 <jvm-options>[1.8.0u121|1.8.0u160]-Xbootclasspath/p:${com.sun.aas.

installRoot}/lib/grizzly-npn-bootstrap-1.7.jar</jvm-options>

 <jvm-options>[1.8.0u161|1.8.0u190]-Xbootclasspath/p:${com.sun.aas.

installRoot}/lib/grizzly-npn-bootstrap-1.8.jar</jvm-options>

 <jvm-options>[1.8.0u191|1.8.0u500]-Xbootclasspath/p:${com.sun.aas.

installRoot}/lib/grizzly-npn-bootstrap-1.8.1.jar</jvm-options>

 <jvm-options>[9|]-Xbootclasspath/a:${com.sun.aas.installRoot}/lib/grizzly-

npn-api.jar</jvm-options>

 <!-- ... -->

</java-config>

With that, your migrated domain should be compatible with the corresponding JDK 8 update, and the
domain will be ready for future migrations as well. Additionally, when considering upgrading to JDK
11, the domain will be prepared as well to run with the correct Grizzly Bootstrap NPN API version.

If your domain has multiple configurations that are used for running additional
instances, you must apply the same changes in their configuration trees as well.

Payara Server 4 to 5 Migration Guide

8

Clustering and High-Availability

Summary of Clustering Options in Payara Server 4

Payara Server 4 supports two mechanisms of clustering. Payara Server 5 improves the one based
on Hazelcast and integrates it better into the domain configuration. On the other hand, while the
traditional clustering inherited from GlassFish is still present, it’s now deprecated.

The first mechanism supported by Payara Server 4 is based on the (already deprecated) Shoal project,
which is the traditional clustering mechanism which Payara Server inherited from GlassFish Open
Source Server. A Shoal cluster needs to be prepared in a systematic manner and new instances
can be manually added or removed as well. Although this mechanism is reliable, there are is set of
multiple limitations that have piled up over the years:

•	 Preparing a cluster requires many things: setting up the cluster in the DAS, setting up each
of the nodes either local or remote, setting up SSH access across all cluster hosts (in the
case of remote nodes)

•	 Since instances must be added or removed manually to the cluster, in a cloud environment,
scaling up or down is usually a cumbersome and extremely tedious task

•	 Only specific data (web session data and Stateful Session Beans) is replicated and stored
across the cluster

•	 The protocol internals used for establishing the communication across instances haven’t
aged well with the side-effect of performance degradation over the lifetime of the cluster

The second mechanism is Hazelcast Clustering, which uses Hazelcast to configure a customized
cluster that allows both new Payara Server and Payara Micro instances to automatically join and
leave the cluster when necessary. This functionality was made available starting with Payara Server
4.1.1.161 and was created to make Payara Server friendlier with cloud environments and simplify
the provisioning work needed to quickly set-up a high-availability environment. However, with these
benefits another set of challenges was introduced as well:

•	 Hazelcast must be enabled manually in all nodes/instances of the server
•	 Although Hazelcast allows auto-discovery of new instances, allowing them to automatically

join a cluster when detected, in specific environments when multiple clusters must be provi-
sioned, the setup can be cumbersome because -

•	 Hazelcast by default uses the multicast protocol to communicate to all nodes across the
cluster. Some cloud providers and container orchestration tools do not support the multi-
cast protocol, so, a customized Hazelcast configuration file must be used to provision all
cluster instances to use another protocol. This is a common occurrence.

Payara Server 4 to 5 Migration Guide

9

Domain Data Grid in Payara Server 5

To overcome all clustering challenges in Payara Server 4, Payara Server 5 introduces the concept of
Domain Data Grid. The Domain Data Grid provides an in-memory data structure that is distributed
amongst all Payara Server instances within a Payara Domain. The Data Grid is highly available, highly
scalable, and enables in-memory data storage and replication among all Payara Server instances
in a domain.

The Domain Data Grid is an evolution of the Hazelcast Clustering supported in Payara Server 4.
Upgrading from this type of clustering to Domain Data Grid is seamless and doesn’t require any
configuration changes. If you use Shoal Clustering in Payara Server 4, you can continue managing
the same clusters in Payara Server 5 with the same administration commands, however they won’t
use the underlying Shoal/GMS technology but instead will run with the assistance of Hazelcast and
behave in a similar manner to Deployment Groups. You should pay closer attention to the section
about clustering changes further in this guide and plan the corresponding migration to Domain Data
Grid or to the Deployment Groups add-on.

In Payara Server 5, Hazelcast is enabled by default compared to Payara Server 4 where it had to
be enabled manually (Enabling Hazelcast is also a requirement to use other features like the JCache
API or using Hazelcast as a data store for Web Sessions Persistence for example). This means that, by
default, all instances in the domain will automatically join the Domain Data Grid and benefit from
its features, including session replication, distributed caches and an embedded Hazelcast grid. The
Domain Administration Server (DAS) will know all instances and coordinate all corresponding com-
munication between them. The DAS can also display information about all instances in the Domain
Data Grid either by using asadmin commands or the Admin Console as on the following picture:

Payara Server 4 to 5 Migration Guide

10

The Domain Data Grid will be composed of running instances only. By default, all instances created
in a domain join the data grid when started. The Domain Data Grid can also contain instances that
aren’t configured in the domain if they are configured to connect to the same data grid.

The instances that join a data grid are categorized in the following types:

•	 DAS: The Domain Administration Server itself
•	 INSTANCE: Individual instances that are part of the same domain as the DAS or are from a

separate domain)
•	 MICRO: Payara Micro instances that explicitly connect to the domain grid.

Deployment Groups in Payara Server 5

While the Domain Data Grid is very flexible, only a single grid exists within the domain. All resources
associated to a Domain Data Grid are shared by all instances in the data grid. Moreover, each instance
in the data grid is managed separately and applications are also deployed separately to each instance.
This is completely acceptable, sometimes even desirable in a dynamic scalable environment.
However, the Domain Data Grid itself doesn’t provide all of the features of the old Shoal clustering
model. That’s why Payara Server 5 introduces the concept of Deployment Groups.

Deployment Groups work as an extension to the Domain Data Grid functionality: A deployment group
is a managed collection of instances that share the same applications and resources. This collection
of instances can provide load-balancing and fail-over functionality as an extension to the Domain
Data Grid, effectively making them work in a similar vein to old Shoal clusters.

You can see above an example of a deployment group configuration. While instances instance-1
and instance-2 are in the deployment group called test-dg, a third instance called instance-3
is not part of it and needs to be managed separately.

Payara Server 4 to 5 Migration Guide

11

Standalone Instances

Payara Server 4 has a specific distinction for two types of instances:

•	 Cluster Instances, which are the instances created directly under a cluster and are exclusive
to each cluster and their life cycle is tied to that of the cluster directly.

•	 Standalone Instances, which are the instances that do not belong to a cluster. Standalone
instances are completely isolated from within each other, which means that they do not
share resources nor applications. Each standalone instance must be managed separately.

In Payara Server 5 however, there is no explicit distinction for instances regarding the context of
the Domain Data Grid and Deployment Groups. All instances created under this model are treated
effectively as standalone instances for the purposes of management and administration. This means
that the same administration commands that manage an instance life cycle (create-instance,
delete-instance, etc.) in Payara Server 4 will work in the same manner on Payara Server 5. The
main distinction is that instances on Payara Server 5 will automatically join the Domain Data Grid
and can be added to Deployment Groups. On Payara Server 4, standalone instances can’t be added
to traditional Shoal cluster but they can join a Hazelcast cluster if their configuration is modified.
Cluster instances in Payara Server 5 still exist as part of the old Clustering Model that is only pres-
ent for legacy purposes and they behave very similar to other standalone instances grouped in a
deployment group.

This distinction must be clarified in case your GlassFish has standalone instances. When migrating
your domain to Payara Server 5, these instances will still work correctly but will join the Domain
Data Grid automatically, They will provide space for the shared replicated memory unless they are
configured as lite instances, which don’t provide storage for the shared memory.

Lite instances of Domain Data Grid are instances, which don’t keep any shared data in their heap
but still can access shared memory which is available on other instances in the grid. Lite instances
are part of the data grid as all other instances, have access to the shared memory and all other grid
features as all other instances. You can turn any existing standalone instance into a Lite instance.
Though, be careful when doing that if you rely on the shared memory. At least one non-lite instance
must be running to keep the memory in the grid. Having too few non-lite instances could also result
in too much heap of those instances consumed by the shared memory. You can turn an instance to
a lite instance with the following asadmin command:

asadmin > set-hazelcast-configuration --lite=true

Payara Server 4 to 5 Migration Guide

12

Summary of Clustering Options in Payara Server 5

Domain
Data Grid

Deployment
Group

Clusters
(Deprecated)

Hazelcast-Based   

Running member instances visible in Domain
Data Grid   

Managed only from the DAS   

Can be a deployment target   

Member instances can be started/stopped
together   

Supports load balancing and fail-over   

Instances can have different configuration  *1  

Member instances visible in the list of
instances   

Instances can connect dynamically
(without configuring the cluster)   

Compatible with Payara Server 4 cluster
admin commands   

Can be joined by a Payara Micro instance  *2  

1) only if they are in the same domain
2) if Payara Micro started with the same discovery mechanism as Payara Server. By default it uses a
different mechanism.

The following entities can join a Domain Data Grid:

•	 Instances that are part of a Deployment Group
•	 Instances created for a Cluster (Deprecated)
•	 Instances in a separate domain configured to join the same Data Grid Group
•	 Payara Micro Instances

The following entities can join a Deployment Group:

•	 Instances created directly when creating the Deployment Group
•	 Instances created separately and added to the Deployment Group

Payara Server 4 to 5 Migration Guide

13

The following entities can join a Cluster (Deprecated):

•	 Instances created exclusively for the cluster.

Keeping a Standard Payara Server 4 Cluster

As stated previously, Payara Server 5 will understand the configuration of Shoal Clusters migrated
from Payara Server 4. If your domain contains a deprecated cluster, you can start that same domain in
Payara Server 5 without any changes. The main difference is that Payara Server 5 will use a Hazelcast
grid under the covers to provision the cluster instead of the Shoal/GMS technology, otherwise the
cluster will function as before with the exception that it’s managed in the Admin Console under a
page called Clusters (Deprecated):

This is a convenience feature of Payara Server 5 that is used to ease migrations from Payara Server
4. Traditional clusters are now managed in Clusters (Deprecated) view on the Admin Console as
shown in the image.

If you were established secure communication over SSL/TLS among the instances of your Shoal
cluster in Payara Server 4, keep in mind that this feature is not available in Payara Server 5, so you
will have to leave the communication channel unsecured. If this is a requirement you must fulfill, it
is recommended that you turn in the Domain Data Grid Encryption feature (introduced in release
5.201), which will guarantee that the data that is handled and transferred across instances of the
Domain Data Grid is properly encrypted and secured.

To enable this feature, you must generate a private key that will be used by the data grid to encrypt
this information:

asadmin > generate-encryption-key

Payara Server 4 to 5 Migration Guide

14

And then, manually enable the encryption feature:

asadmin > set-hazelcast-configuration --encryptdatagrid true

More information about the details of how this feature operates can be found in the official Payara
Platform documentation.

Migrate to Deployment Groups

Although clusters from Payara Server 4 should work in Payara Server 5, these types of clusters are
deprecated, and we recommend you migrate to Deployment Groups instead. Look for how to do it
in the following sections.

Migrating from a Standard Payara Server 4 Cluster to a Deployment Group

If you decide to migrate to a Deployment Group, you’ll get more flexibility in how you manage your
cluster. Deployment groups are like clusters but, besides no longer creating instances specific to
a cluster, it’s possible to create and configure instances individually and later add or remove them
from a deployment group. It’s also possible to add the same instance to multiple deployment groups.

You can migrate a cluster from Payara Server 4 to a Deployment Group directly during an upgrade
to Payara Server 5. Or you can keep the cluster during the upgrade (as described in the previous
section) and later migrate a deprecated cluster in Payara Server 5 to a Deployment Group, whichever
option best fits your overall migration plan.

If you want to keep the configuration and behaviour of a deployment group as similar as possible to
the migrated cluster, follow these steps:

1.  Copy any custom cluster configuration
•	 If your cluster contains custom configuration, copy it to to the configuration associated

with the cluster (e.g. cluster-config)
•	 Alternatively, instead, you can note it down to apply it later to a new deployment group

2.  Convert all cluster instances to standalone instances
•	 While the domain is stopped, manually modify the domain.xml file on the DAS and

remove the <clusters> element completely, including all child elements
•	 This will also delete all of the clusters. If you have more clusters, you can only delete

the <cluster> element in <clusters> which corresponds to the migrated cluster

https://docs.payara.fish/documentation/payara-server/hazelcast/datagrid-encryption.html
https://docs.payara.fish/documentation/payara-server/hazelcast/datagrid-encryption.html

Payara Server 4 to 5 Migration Guide

15

3.  Create a deployment group
•	 Start the domain
•	 Create a deployment group (you may give it the name of the migrated cluster, if the clus-

ter no longer exists)
•	 Add the instances, which belonged to the previous cluster, into the new deploy-

ment group
•	 Create any custom resources on the deployment group if needed (if you didn’t copy

them to the cluster configuration earlier)

You can now do the same actions on the new deployment group like you could do on the previous
cluster. For example, the following actions are equivalent:

Action Deployment group Cluster

Admin Console asadmin command Admin Console asadmin command

Start all
instances

Start
Deployment
Group

start-deploy-
ment-group Start Cluster start-cluster

Stop all
instances

Stop
Deployment
Group

stop-deploy-
ment-group Stop Cluster stop-cluster

Create an
instance

New instance in
the group.

And existing
instance to the
group

create-instance

add-instance-to-
deployment-group

New instance in
the cluster

create-instance
--cluster

Some configuration that’s available for clusters is also available for deployment groups. This config-
uration is applied on top of the configuration of each server instance in the group, such as deployed
applications, resources and properties. All other configuration settings that are missing for a deploy-
ment group can be applied to the configuration of individual instances by editing their configuration
(e.g. a configuration named cluster-config) or by other means:

•	 Batch configuration is available in the Batch page of each individual configuration (in the
sidebar in Admin Console)

•	 JMS Physical destinations can no longer be configured from within Payara Server. Instead,
you can use the imqadmin or imqcmd tools in the mq/bin directory and connect to an MQ
server used by the deployment group directly. To add a JMS resource to the whole deploy-
ment group, add the deployment group to the resource’s targets

Payara Server 4 to 5 Migration Guide

16

Migrating from a Hazelcast Cluster of Standalone Instances to the Domain
Data Grid

In Payara Server 4, the recommended way to create a cluster backed by the Hazelcast mechanism
is to create multiple standalone instances that reference the same clustering configuration so that
they connect between each other. If this is your case, this section will explain how to migrate it to
the Domain Data Grid with a similar setup in Payara Server 5. Once this is done, you have the option
to group your instances into deployment groups to manage them as a single cluster, which isn’t
possible in Payara Server 4.

No configuration changes are needed to migrate standalone instances in Payara Server 4. If this is
the case for your Payara Server 4 domain, you can just use it on Payara Server 5 without any con-
figuration changes. This will result in having the same instances in Domain Data Grid and all would
work as in Payara Server 4 with some changes described below:

•	 Instead of using multicast, the Hazelcast discovery mechanism is changed to the domain
discovery mode introduced in Payara Server 5. On this mode, the Domain Admin Server
(DAS) won’t connect to any instance, instead, instances will “talk” to the DAS to join the
Data Grid. This means that the DAS should be started before any instance, otherwise it can
take up to 5 minutes until instances started before the DAS can connect to the data grid.
This time can be decreased by modifying the Hazelcast merge delay system properties. The
discovery mechanism can also be changed back to using multicast discovery in the Admin
Console configuration for the Domain Data Grid configuration or by executing the asadmin
command set-hazelcast-configuration --clustermode multicast

•	 The DAS listens on a different Hazelcast port than server instances. By default, it listens on
port 4900 while other instances listen on ports starting with 5900. In Payara Server 4, both
DAS and instances use ports starting with 5900 by default.

•	 Payara Micro instances won’t automatically connect to the Payara Server 5 Domain Data
Grid with default configuration.

Payara Server 4 to 5 Migration Guide

17

Keeping a Cluster of Payara Micro Instances

If you cluster together multiple Payara Micro instances, no changes in configuration are needed
for running it with Payara Micro 5. The discovery mechanism in Payara Micro 5 is still multi-
cast, therefore instances will discover and form a cluster themselves as before. However, there are
some caveats:

•	 The default starting port changed from 5900 to 6900. To change it back, use the
--startport command line argument when starting each instance

•	 The default multicast address and port for multicast discovery are different in Payara Server
and Payara Micro. To modify them in Payara Micro, use the --mcport and --mcaddress
command line arguments when starting each instance.

•	 in Payara Server, the default mcaddress (multicast group) is 224.2.2.3 and mcport (mul-
ticast port) is 54327. Run Payara Micro with these values if you didn’t modify them on
Payara Server

•	 It’s now easier to configure a different discovery mechanism than multicast with the
--clustermode command line argument. On Payara Server 4 you must configure a cus-
tomized hazelcast.xml configuration file and manually configure each discovery mode

Keeping a Hybrid Cluster of Payara Server and Payara Micro Instances

Payara Micro 4 instances can automatically join a cluster of Payara Server 4 instances and use the
DAS of the server to monitor the list of instances conforming the cluster. This is usually known as a
Payara Hybrid cluster. Payara Micro 5 instances on the other hand won’t automatically cluster with a
Payara Server Domain Data Grid, due to the changes mentioned in the previous section. If you have
a hybrid cluster that you want to migrate to the Payara Platform, there are two options to consider:

•	 Configure the Payara Server Domain Data Grid to use the multicast discovery mode so
that you get the same clustering behavior as in Payara Server 4

•	 Configure the Payara Micro instances to use the domain discovery mode so that they con-
nect to the Domain Data Grid

You need to upgrade both Payara Server and Payara Micro instances to the same
version at once. If you don’t, you might encounter unexpected side effects and loss of
data within the cluster.

The preferred way in most cases is to use the first option: The new domain discovery mode; it’s
more powerful, works in any network topology and even works well in cloud environments. This
discovery mode only requires either the IP address or host name of the DAS. To do this, start your
Payara Server 5 domain, wait until the Domain Data Grid is fully started by checking the DAS’ log
and lookin for the following (similar) entry:

Payara Server 4 to 5 Migration Guide

18

INFO: Data Grid Status

Payara Data Grid State: DG Version: 35 DG Name: development DG Size: 1

Instances: {

 DataGrid: develpoment Instance Group: MicroShoal Name: server Lite: false

This: true UUID: b029cd04-5ffc-4082-b57c-2865e104d82c

Address: /192.168.1.148:4900

}

And then start your Payara Micro 5 instances like this:

java -jar payara-micro-5.jar --clustermode domain:<das-hostname>:<cluster-port>

And that’s it. The Payara Micro instances will join the Data Grid and will show in the status of the
Domain Data Grid either on the DAS’ log or in the list shown in the admin console.

It’s not required that the DAS is running when starting new Payara Micro instances.
They won’t join a cluster and will wait until the DAS is accessible to join the cluster.
However, there may be up to a 2-minute delay before the DAS is started and each
instance finds out about it so it’s better to run DAS while Payara Micro instances
are started.

If you’d rather keep the multicast discovery as with Payara Server 4, you need to change the Domain
Data Grid Discovery mode to multicast on Payara Server 5. You also need to run Payara Micro with
the --mcport and --mcaddress command line arguments to specify the same multicast address
and port used by Payara Server because they are different by default. Keep in mind that this will affect
the way other Payara Server 5 instances will use to join the Domain Data Grid as well. Use this option
only if you have careful control of all your instances, be they Payara Server or Payara Micro instances.

Payara Server 4 to 5 Migration Guide

19

Mapping Between JSON and Java Objects

Description of the Changes in JSON Mapping

You can run Java EE 8 applications on Payara Server 5. One of the main benefits of this new version
of the Java EE standard is that it includes the JSON-B (JSON Binding) API. This API is used to define
a serialization of POJOs into JSON payloads and vice-versa.The Jackson library is a commonly used
third-party alternative which served as inspiration for this new API. One of the main advantages of
JSON-B in Payara Server 5 is that it is integrated out of the box with the JAX-RS container. It is used
for automatic serialization and de-serialization of POJOs that are part of the payload managed in both
JAX-RS REST service requests and responses. All of this is defined by standard JSON-B mapping
and doesn’t rely on a non-standard mapping provided by custom extensions.

Payara Server 4 also provides automatic mapping between Java objects and JSON within the JAX-RS
container, but compared to Payara Server 5, this mapping is derived from JAX-B (Java XML Binding)
API, which is designed for mapping between Java objects and XML and isn’t convenient for the
JSON format. Furthermore, while this mapping is standardized for XML payloads, it’s not generally
supported on other application servers for JSON payloads. In Payara Server 4, the default imple-
mentation of a JSON serialization provider for JAX-RS (Jersey) is an EclipseLink library called MOXy
provided by the EclipseLink component. Jackson also provides a JAX-RS mapper which works very
well with Payara Server 4 and is often used as an alternative to Moxy.

When migrating applications from Payara Server 4 to 5, if your applications declare JAX-RS com-
ponents that rely on the automatic serialization and marshaling mechanism provided by JAX-B
annotations, keep in mind that these annotations will be ignored on Payara Server 5 by default!
This is due to the switch from JAX-B to JSON-B as the default provider for JAX-RS JSON payloads.

Migrating from JAX-B Mappings to JSON-B Mappings

Because JSON-B is a standard way of mapping Java objects to JSON payloads it’s best option when
building new applications with Payara Server 5. If you are migrating an application from Payara Server
4, it might not be convenient to refactor all your JAX-B mappings to use it but we still recommend
to evaluate this option. Refactoring to using JSON-B would give you the advantage of using a well
-integrated and better supported API for JSON mappings and confidence that your application uses
standard and predictable API that will not break after upgrades to newer versions of Payara Server
or even in case of migration to any other server.

lf you want to maintain the same configuration for the JSON serialization and marshalling of your
entities in your applications with JSON-B as you now have with JAX-B, you will have to refactor your
code to use the corresponding JSON-B annotations.

Applications that use the JAX-B API for configuring JSON serialization in Payara Server 4 (using the
default MOXy provider) will have annotated classes like this one:

http://json-b.net/
https://github.com/FasterXML/jackson
https://www.eclipse.org/eclipselink/#moxy

Payara Server 4 to 5 Migration Guide

20

@XmlAccessorType(XmlAccessType.FIELD)

@XmlRootElement(name = "payload")

public class MyPayload {

 @XmlElement(name = "payloadID", required = true)

 private String id;

 @XmlAttribute(name = "editable")

 private Boolean editable;

 ...

}

The same entity configured using JSON-B in Payara Server 5 would look like this:

public class MyPayload {

 @JsonbProperty(value="payloadID", nillable=false)

 private String id;

 private Boolean editable;

 ...

}

You will notice that the same entity configured using JSON-B annotations is easier to understand
and has less declarations. For getting started with the JSON-B API, you can follow the official Getting
started with JSON Binding guide.

It’s also possible to keep the JAX-B annotations together with the new JSON-B annotations. This
is recommended if:

•	 your application maps the same entity to both XML and JSON
•	 you want to compare how the new JSON-B mapping performs compared to the

JAX-B mapping
•	 you want to keep the possibility to easily revert to using the JAX-B mapping with Payara

Server 5 in the future

http://json-b.net/docs/user-guide.html
http://json-b.net/docs/user-guide.html

Payara Server 4 to 5 Migration Guide

21

Keep Using JAX-B Mapping for JSON in Payara Server 5

It’s understandable that in some cases, refactoring definitions for mapping between Java classes
and JSON payloads can require a lot of effort. In this case, it’s possible to configure your application
to still use the JAX-B annotation configuration as it was on Payara Server 4. To do this, you’ll have
to add the following Servlet context parameter to your web.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.

jcp.org/xml/ns/javaee/web-app_3_1.xsd"

 version="3.1" metadata-complete="false">

 <servlet>

 <servlet-name>com.mycompany.MyApplication</servlet-name>

 <init-param>

 	 <param-value>MoxyJsonFeature</param-value>

 </init-param>

 </servlet>

 ...

</web-app>

With this configuration, JAX-RS services in your application will support the same mapping with
JAX-B annotations as supported in Payara Server 4. In addition, JSON-B annotations in the same
application if there are any, would be ignored. Keep in mind that in the future the JAX-B annotation
support might be dropped entirely in the future, so it’s best that, at some point, you plan to refactor
your applications to use JSON-B annotations instead.

Keep Using Jackson 2 Library for JSON Mappings in Payara Server 5

If you use Jackson 2 library for mapping Java classes to JSON payloads in JAX-RS endpoints, you
can keep using it in Payara Server 5. In the long run, we recommend to migrate to using JSON-B
API because it would give you the advantage of using a well-integrated and supported API for JSON
mappings, and confidence that your application uses a standard and predictable API that will not
break after upgrades to newer versions of Payara Server (or even in case of migration to another
server running Java EE 8 applications). As a bonus, your application would be thinner after you drop
the Jackson dependency.

Payara Server 4 to 5 Migration Guide

22

To continue using Jackson with Payara Server 5, you’ll have to add the following Servlet context
parameter to your web.xml deployment descriptor:

<?xml version=”1.0” encoding=”UTF-8”?>

<web-app xmlns=”http://xmlns.jcp.org/xml/ns/javaee”

 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

 xsi:schemaLocation=”http://xmlns.jcp.org/xml/ns/javaee http://xmlns.

jcp.org/xml/ns/javaee/web-app_3_1.xsd”

 version=”3.1” metadata-complete=”false”>

 <servlet>

 <servlet-name>com.mycompany.MyApplication</servlet-name>

 <init-param>

 <param-name>jersey.config.jsonFeature</param-name>

 <param-value>JacksonFeature</param-value>

 </init-param>

 </servlet>

 ...

</web-app>

In the case you define the JAX-RS application programmatically, you can add the JacksonFeature
to the Classes list of your Application.

@ApplicationPath(“/api”)

public class JaxRsActivator extends Application {

 @Override

 public Set<Class<?>> getClasses() {

 Set<Class<?>> classes = new java.util.HashSet<>();

 classes.add(com.fasterxml.jackson.core.util.JacksonFeature.class);

 return classes;

 }

}

You also needed to have all required Jackson 2 dependencies in your application. This is also required
by Payara Server 4 so the Jackson dependencies should already be in your application and you don’t
have to take any further action.

With this configuration, JAX-RS services in your application will support the same mapping with the
Jackson 2 annotations as supported in Payara Server 4. In addition, JSON-B annotations in the same

Payara Server 4 to 5 Migration Guide

23

application if there are any, would be ignored. Note that this configuration is very similar to enabling
the JAX-B mappings described in the previous section.

Built-in Databases
Payara Server 5 includes the H2 database, which isn’t present in Payara Server 4. The H2 database
is used for the default JDBC data source for applications instead of the Derby DB used in Payara
Server 4. A data source for Derby DB is still present in Payara Server 5 but usage of Derby DB is
deprecated and not supported.

Description of the Changes in Built-in Databases

Some of the internal features of Payara Server, either features exposed as part of the standard set
of APIs or features specific to Payara Server, require the use of a data store to persist data after the
server shuts down. Payara Server 4 comes bundled with Derby database (also known as JavaDB)
that is used to make these features work correctly, and this database is exposed as a set of two
JDBC resources:

•	 A connection pool called __TimerPool which connects to an embedded Derby database.
Since this is an embedded database, the server will start this database inside the same JVM
process used for the DAS. This pool is exposed as jdbc/__TimerPool JDBC datasource
but is not to be used by applications.

•	 A connection pool called DerbyPool, which connects to a standalone Derby database. It’s
associated with the JDBC data source identified by jdbc/__default. This data source is
used as the default data source for applications.

However, Derby DB is currently considered an outdated product with several production-aware
issues (like inconsistent concurrent updates and unexpected row-locking). These issues motivated
us to gradually replace this database with a more robust solution in Payara Server 5, which is H2
database. The following is a list of the changes introduced in Payara Server 5:

•	 There is a new JDBC connection pool called H2Pool which is used to configure database
connections to an embedded H2 database.

•	 The jdbc/__default JDBC data source is now linked to this new connection pool instead
of the DerbyPool connection pool

•	 The __TimerPool connection pool is configured to connect to an embedded H2 database
as well but it uses an XA Data source resource configuration to allow multiple instances to

Payara Server 4 to 5 Migration Guide

24

connect to it concurrently. This connection pool is intended to be used by the EJB Timer
Service separately from the default connection pool.

•	 The DerbyPool connection pool no longer exists.
•	 There is a new connection pool named SamplePool that is configured to connect to a local

Derby server. This connection pool can be used to quickly connect to a local unsecured
Derby database for development purposes only.

•	 There is a new JDBC data source named jdbc/sample that uses the previous connection
pool for the local Derby database.

•	 The asadmin commands start-database and stop-database will control the life cycle of the
local H2 database instance instead of the old Derby database

Production Environments

Neither Derby DB nor H2 DB are recommended for production usage. H2 is
included within Payara Server to simplify application development. For production
environments, we recommend using a separate production-ready relational database
configured as a JDBC resource and its corresponding JDBC connection pool.

H2 Database

H2 DB is installed in the directory ${PAYARA_INSTALL_DIR}/h2db.

To start the standalone H2 database, use the following asadmin command:

asadmin> start-database

To stop the H2 database, use the following asadmin command:

asadmin> stop-database

Derby Database

There is no embedded Derby installation in Payara Server 5.

Keeping the Data Source Configuration from Payara Server 4

As stated previously, usage of Derby DB is not supported. If you are upgrading to Payara Server 5
with your domain configuration copied directly from a Payara Server 4 domain, the data source and
connection pool configuration will not work correctly due to the embedded Derby installation missing

Payara Server 4 to 5 Migration Guide

25

from the server files, so it is recommended that you migrate the old data source and connection pool
configuration settings to the ones that rely on H2 instead. Read the following section to find out how.

Migrating to the New Data Source Configuration in Payara Server 5

If your domain relies on the default data source, you need to make sure that your applications will
work with the H2 DB instead of the Derby DB. To do this, follow these steps:

1 – Before the domain is started, proceed to manually modify the domain.xml configuration file
and edit the default connection pools. Locate the resources tag element and identify the default
connection pools:

<resources>

 <!-- … -->

 <jdbc-connection-pool datasource-classname=”org.apache.derby.jdbc.

EmbeddedXADataSource” name=”__TimerPool” res-type=”javax.sql.XADataSource”>

 <property name=”databaseName” value=”${com.sun.aas.instanceRoot}/lib/

databases/ejbtimer”></property>

 <property name=”connectionAttributes” value=”;create=true”></property>

 </jdbc-connection-pool>

 <jdbc-connection-pool is-isolation-level-guaranteed=”false” datasource-

classname=”org.apache.derby.jdbc.ClientDataSource” name=”DerbyPool” res-

type=”javax.sql.DataSource”>

 <property name=”PortNumber” value=”1527”></property>

 <property name=”Password” value=”APP”></property>

 <property name=”User” value=”APP”></property>

 <property name=”serverName” value=”localhost”></property>

 <property name=”DatabaseName” value=”sun-appserv-samples”></property>

 <property name=”connectionAttributes” value=”;create=true”></property>

 </jdbc-connection-pool>

 <!-- … -->

</resources>

Now, replace these definitions with the default connection pool settings used for the H2 databases:

<resources>

 <!-- … -->

 <jdbc-connection-pool datasource-classname=”org.h2.jdbcx.JdbcDataSource”

name=”__TimerPool” res-type=”javax.sql.XADataSource”>

 <property name=”URL” value=”jdbc:h2:${com.sun.aas.instanceRoot}/lib/

databases/ejbtimer;AUTO_SERVER=TRUE”></property>

Payara Server 4 to 5 Migration Guide

26

 </jdbc-connection-pool>

 <jdbc-connection-pool is-isolation-level-guaranteed=”false” datasource-

classname=”org.h2.jdbcx.JdbcDataSource” name=”H2Pool” res-type=”javax.sql.

DataSource”>

 <property name=”URL” value=”jdbc:h2:${com.sun.aas.instanceRoot}/lib/

databases/embedded_default;AUTO_SERVER=TRUE”></property>

 </jdbc-connection-pool>

 <!-- … -->

</resources>

2 – Locate the default JDBC resource definition for the default datasource only in the same
tag element:

<resources>

 <!-- … -->

 <jdbc-resource pool-name=”DerbyPool” object-type=”system-all” jndi-

name=”jdbc/__default”></jdbc-resource>

 <!-- … -->

</resources>

Replace its definition with the Payara Server 5 equivalent:

<resources>

 <!-- … -->

 <jdbc-resource pool-name=”H2Pool” object-type=”system-all” jndi-

name=”jdbc/__default”></jdbc-resource>

 <!-- … -->

</resources>

Payara Server 4 to 5 Migration Guide

27

Keep in mind that when changing the internal database from Derby to H2 will make the data that is
stored in the old database inaccessible by the new state of the server. In most cases this won’t be
a problem since currently Payara Server uses this internal database to store the information of per-
sistent timers and the historic information of executed batch jobs. Persistent timer information can
be skipped without issues in a controlled migration (the server will create new data if the database
is empty), so the only relevant set of data that you might be interested to keep would be historic
batch jobs data.

If you are interested in keeping this data, our recommendation is that you export this data by creating
the relevant SQL data manipulation scripts that inserts the data in the H2 database. Both Derby and
H2 have a similar SQL syntax, so this shouldn’t take that much effort.

HTTP/2 Protocol Support
Payara Server 5 introduces support for the HTTP/2 protocol as part of the new Servlet 4.0 API. This
protocol is enabled by default on the default HTTPS network listeners included within the serv-
er’s configuration.

Changes Related to HTTP/2 Protocol

Support for HTTP/2 protocol is enabled on secure HTTP network listeners by default in Payara Server
5. This version of HTTP protocol brings a lot of performance improvements like:

•	 Request and response multiplexing to reduce the number of required connections
•	 Header compression to reduce the amount of data
•	 Server Push to send multiple related files faster
•	 Binary encoding of commands to improve security

Additionally, the protocol requires encryption with an improved version of Transport Layer Security
(TLSv1.2 at a minimum). That’s why it can only be enabled on secured HTTP network listeners in
Payara Server.

While some web frameworks used for client applications and web browsers can leverage HTTP/2
features to improve overall network performance, HTTP/2 support is not guaranteed to be stable
enough in all cases, which could cause issues for your applications. If you are upgrading an existing
application from Payara Server 4 to Payara Server 5, we recommend disabling HTTP/2 support on all
HTTP listeners first to avoid encountering unwanted errors. After your application runs successfully
on Payara Server 5, you can test it with HTTP/2 enabled to verify if it doesn’t introduce any issues.

By design, HTTP/2 doesn’t support authentication using client certificates. In HTTP/2, a client can
have multiple outstanding requests. Without some sort of correlation information, a client is unable
to identify which request caused the server to request a certificate. If you need to use client certif-
icates for authentication, then you should disable HTTP/2 and keep it disabled.

Payara Server 4 to 5 Migration Guide

28

Keeping HTTP 1.1 Protocol for All Listeners

The safest way to upgrade from Payara Server 4 to Payara Server 5 is to keep the same configura-
tion for all HTTP listeners using the HTTP 1.1 protocol untouched and ensure that HTTP/2 is disa-
bled completely.

If you are using the Admin Console, you can disable the HTTP/2 protocol for network listeners in
the Network Config → Protocols option. After choosing the listener, go to the HTTP tab and un-select
the HTTP/2 option:

Payara Server 4 to 5 Migration Guide

29

If you prefer using the command line, you can disable the HTTP/2 protocol on a network listener by
executing the following asadmin command:

asadmin> set configs.config.server-config.network-config.protocols.

protocol.<listener-name>.http.http2-enabled=false

Known Issues After Migrating

There are a few known issues at the moment that can arise in your environment after executing a
successful migration to Payara Server 5, which are listed in the following table along with their causes
and recommended workarounds:

Issue Cause Workaround

Admin Console
doesn’t show
monitoring data for
instances apart from
the DAS

Internal changes
in the Jersey
components used by
the admin console.

To access the monitoring data of all relevant
instances it’s best to use the REST monitoring API
offered by the DAS and query the relevant data
separately in the browser.

This is a known bug and will be fixed in a future
release of Payara Server 5.

PrimeFaces
applications
encounter
unexpected errors

The Server Push
feature of the
HTTP/2 protocol is
known to interfere
with PrimeFaces’
pushing mechanisms

Disable the Server Push features in all relevant
HTTP network listeners.

There is no clear solution at the moment in order
to make both features work in co-existence, so
if there are other applications that require the
use of HTTP/2 Server Push, it’s best to define a
customized virtual-server where the application
should be deployed within a separate network
listener.

Payara Server 4 to 5 Migration Guide

30

Client Certificate
Authentication does
not work when used
with HTTP/2

By design, the
protocol does
not support the
CLIENT-CERT
authentication
method

Disable the HTTP/2 protocol in all relevant
network listeners.

If HTTP/2 usage is a priority, switch out to a better
suited authentication method.

Conclusion

After following the instructions detailed in this guide you should be able to run your old Payara Server
4 domains in Payara Server 5. Keep in mind that these instructions showcase the necessary steps
to have a working domain in Payara Server 5, so additional features that can be used to increase the
productivity of your applications should be considered when further developing them. We recom-
mend that you browse through the official product documentation to have a better understanding
of these features.

Lastly, this guide covers the most common scenarios and challenges that can be encountered when
implementing a server migration; so in the case you stumble around a different issue than the ones
documented here, please make sure to raise a support ticket if you have a Payara Enterprise sub-
scription (by using the Customer Hub support portal or writing an email to support@payara.fish)
and include all of the relevant information about the problem you are encountering. We’ll work in
helping you overcoming these issues and complete a successful migration!

https://docs.payara.fish/
https://support.payara.fish/hc/en-gb/restricted?return_to=https%3A%2F%2Fsupport.payara.fish%2Fhc%2Fen-gb
mailto:support%40payara.fish?subject=

Payara Server 4 to 5 Migration Guide

31

sales@payara.fish +44 207 754 0481 www.payara.fish

  

Payara Services Ltd 2021 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Where to Get More Migration Help

Hands-On Assistance for Payara
Enterprise Customers
For additional help with the migration from Payara Server 4 to
Payara Server 5 as a Payara Enterprise customer, download our
Payara Accelerator Upgrade Guide, and learn about our add-on
consultancy solution. Download our Payara Accelerator Upgrade
Guide to learn more about our consultancy solution.

Get Payara Platform Enterprise

If you’re not yet a Payara Enterprise customer, obtaining a Payara Enterprise subscription will give
you access to Payara Platform experts to accelerate your project delivery while reducing risks and
costs and helping you deliver your project on time and within budget.

You’ll have unlimited tickets to get all of your questions answered, access to a private customer
knowledge base and exclusive access to crucial fixes and patches.

Learn more about Payara Platform Enterprise.

Eclipse, GlassFish, and MicroProfile are trademarks of Eclipse Foundation, Inc.

Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or other coun-
tries. Docker, Inc. and other parties may also have trademark rights in other terms used herein.

Kubernetes is a registered trademarks of The Linux Foundation in the United States and/or other countries.

Hazelcast is a trademark of Hazelcast, Inc. All other trademarks used herein are the property of their respective owners.

© 2019 Payara Services Ltd. All rights reserved.

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://info.payara.fish/upgrade-data-sheet?hsCtaTracking=eebaa3c5-29fb-4fcd-9af1-a16935252492%7Ce93574ed-cd35-4b2e-bf7c-e86a5bafa9c2
https://info.payara.fish/upgrade-data-sheet?hsCtaTracking=eebaa3c5-29fb-4fcd-9af1-a16935252492%7Ce93574ed-cd35-4b2e-bf7c-e86a5bafa9c2
https://www.payara.fish/support/

	Introduction
	Main Advantages of Payara Server 5
	Clustering and High Availability Improvements
	Cloud Deployment Improvements

	Migration Process
	Preparation
	Migrating a Domain from Payara Server 4 using Backup and Restore
	Additional Considerations for Nodes and Instances
	Special Considerations for Payara Server 5.201

	Clustering and High-Availability
	Summary of Clustering Options in Payara Server 4
	Domain Data Grid in Payara Server 5
	Deployment Groups in Payara Server 5
	Standalone Instances
	Summary of Clustering Options in Payara Server 5
	Keeping a Standard Payara Server 4 Cluster
	Migrate to Deployment Groups
	Migrating from a Standard Payara Server 4 Cluster to a Deployment Group
	Migrating from a Hazelcast Cluster of Standalone Instances to the Domain Data Grid
	Keeping a Cluster of Payara Micro Instances
	Keeping a Hybrid Cluster of Payara Server and Payara Micro Instances

	Mapping Between JSON and Java Objects
	Description of the Changes in JSON Mapping
	Migrating from JAX-B Mappings to JSON-B Mappings
	Keep Using JAX-B Mapping for JSON in Payara Server 5
	Keep Using Jackson 2 Library for JSON Mappings in Payara Server 5

	Built-in Databases
	Description of the Changes in Built-in Databases
	H2 Database
	Derby Database
	Keeping the Data Source Configuration from Payara Server 4
	Migrating to the New Data Source Configuration in Payara Server 5

	HTTP/2 Protocol Support
	Changes Related to HTTP/2 Protocol
	Keeping HTTP 1.1 Protocol for All Listeners

	Known Issues After Migrating
	Conclusion
	Where to Get More Migration Help
	Get Payara Platform Enterprise

