
Jan Nilsson Quantum Satis 2024-07-18 Page 1 (V 0.6)

Quantum Satis

a model for building JakartaEE systems

"Neither too much nor too little"

"Without exaggeration"

"Suitable size"

"Enough"

Jan Nilsson Quantum Satis 2024-07-18 Page 2 (V 0.6)

Content
What is "Quantum Satis"? ... 3

From data model to services ... 4

Data model .. 4

Entity model .. 5

Services .. 6

Overarching principles ... 8

Entity Name ... 8

Entities ... 8

Guest entities ... 8

Databases .. 8

Primary keys .. 8

Persistence Manager ... 9

Transaction management .. 9

Communication ... 9

Data Transfer Objects .. 10

DTO_ STATUS ... 13

Packaging ... 13

Metadata ... 15

Classes ... 16

Tool .. 19

EntityModelBuilder ... 19

EntityModelBuilder Data Model: ... 20

Data model for packaging entities in EntityModelBuilder: ... 21

Code Generation ... 21

Packages and classes ... 21

Metadata ... 22

Remote and Local Facades .. 22

Client library .. 22

Jan Nilsson Quantum Satis 2024-07-18 Page 3 (V 0.6)

What is "Quantum Satis"?
QS is a model for how JakartaEE applications can be structured and how they communicate.

As the name suggests, everything is a bit "just right", there are influences from DDD (Domain Driven

Design), Microservice, Repository Pattern, boilerplate code, CRUD and transaction management but

QS compromises in several places with the "rules" that other models have. A typical example is that a

deployed QS system has a database, not one for each microservice.

You can think of it as QS is a "backend-backend system", i.e. the back part of an ERP system in an

application server. The code that is NOT covered by QS is the unique business logic. However, there

are validation methods in QS that should be overridden in implementations of QS as well as the

classes that control when updating the database, so all updates will be done in the same structured

way.

QS is not just a model, but has a number of tools to automate the generation of the classes needed.

In the description of the model, reference is sometimes made to these tools.

QS is developed and tested with Netbeans 20, Azul Java 17, Payara 6.2024.5, Eclipse as a JPA

implementation and the database manager Informix 14.10

Current status

The model is documented (in this document), working java code for AmUserBase and its entities,

class for rest communication, and façade generation for local and remote interfaces and packaging to

client jarfiles. All java code is compilable and can be deployed and tested. However, the Java code

needs to be analyzed and corrected since I haven't coded commercially since 2015, my code

shouldn't go to production without review

A Swing application to register the entity model is ready. The database schema for the entity model is

available for Informix 14.10. (Only common database types are used, so it's easy to migrate to other

databases.)

What remains is the code generation that will create all classes, package structure, etc. The code

generation will use Apache Velocity.

Jan Nilsson Quantum Satis 2024-07-18 Page 4 (V 0.6)

From data model to services
QS is based on a data model that is implemented via rules to a number of stateless session beans.

Data model

The content of this document and the description of QS are based on the data model above. The

model shows part of a system where users and roles for permissions are registered. The user can

have a number of roles. The user can order different jobs that are associated with a role the user has.

For the jobs that have been ordered, the user can see the status, etc. Login history is also saved for

the user.

It is not important which attributes are present in the different objects, what is important is that the

objects exist and their relationships.

Jan Nilsson Quantum Satis 2024-07-18 Page 5 (V 0.6)

Entity model

From the data model, an entity model is created.

The user, role, and job entities are selected to be primary entities. This means that those entities and

their relationships will exist in class names that start with Am (access module). Logic for managing the

user entity and its relationships will be in the AmUser class as well as the AmUserBase. An Am class is

to some extent equivalent to an Aggregate in Domain Driven Design.

Rolejob and Userrole are relational tables and do not have a corresponding entity but are defined in

user/role and role/job with @ManyToMany annotation.

Jan Nilsson Quantum Satis 2024-07-18 Page 6 (V 0.6)

Services
QS is based on the entity model being divided into logical parts, service, these services correspond to

a Stateless Session Bean and are thus a deployable unit and the smallest unit that is managed.

 In the picture, the model has been divided into three services:

• UserService

• RoleService

• JobService

It is possible to register a service that contains more than one primary entity, see more under

Packaging.

The userrole and rolejob relational entities need to be placed together with the primary entity that

will contain validations and database joins for the entity. In this example, userrole has been placed

together with user.

The examples in this document are based on UserService with the two primary entities user and role

in the service to show a more complex packaging. Java code is available for UserService.

Jan Nilsson Quantum Satis 2024-07-18 Page 7 (V 0.6)

Jan Nilsson Quantum Satis 2024-07-18 Page 8 (V 0.6)

Overarching principles

Entity Name
QS adds the prefix Eb before the table name as the name of the entity. The user table thus gets an

entity called EbUser. Mapping to the correct table name is done with the annotation @Table(name =

"user").

For guest entities, the Guest suffix is also added, so a table named role that is included as a guest

entity in a service is named EbRoleGuest.

This increases the readability of the code.

Entities
The QS code generator generates code for all entities registered for a service based on the registered

entity model. No code needs to be written by developers for entities. The entity that is considered to

be the center/master of the service is marked as primary and becomes the entity that becomes the

governing entity for the generation of classes for CRUD, etc.

Guest entities
When an entity needs to appear in a service where it should not be according to the entity model,

Role in our case as seen from UserService, it can do so by being a "guest" in that service. A guest

cannot be updated, only read, and will then cause the persistence handler in the UserService to see

that the relationship between the UserRole and the Role is fulfilled correctly and will update the

database. The number of attributes included in an entity when it is a guest should be limited as no

business rules can be implemented in the entity to protect certain attributes. It is appropriate to

include the attributes corresponding to the foreign-key as well as attributes to make it easier to

understand what the occurrence represents, such as a description or a name.

A major advantage of this, instead of removing the foreign key by using two databases, is that the

database is always consistent and that ID concepts between Role and UserRole are guaranteed to be

correct and identical.

Guest entities don't have navigation to other guest entities. When the jobid column is included in the

EbOrderedjobGuest guest entity, the getJobid method will return an Integer with the key, not the

EbJobGuest entity! To retrieve the name of a job, the findJob (pID) class in AmJobBase needs to be

called from, for example, AmUser. The code generator will create the method.

Databases
In Microservice and Domain Driven Design, for example, it is advocated that each module should

have its own database in order to isolate problems to the same area and to achieve scalability. For

QS, it is the requirements of the business that govern, but that a common database is preferable.

There may be multiple application servers using the same database, and there may be application

servers within the same larger system using their own databases. The advantage of having a database

for all code executed in an application server is that it is possible to use the database's foreign-key to

strengthen relationships between objects.

Primary keys
The only primary keys that QS supports are @SequenceGenerator the annotation. The corresponding

column in the database must be of type Integer. Composite primary keys, UUIDs, and key values from

tables in the database are NOT implemented in the code generation in QS version 1.

Jan Nilsson Quantum Satis 2024-07-18 Page 9 (V 0.6)

Persistence Manager
QS uses JPA (Jakarta Persistence API) to work against the database. By only including the entities that

are directly processed by the main object in the service (e.g. UserService) as well as the related guest

entities, the persistence manager will perceive it as if it sees the entire database, that the database

consists only of these entities/tables. Persistence handlers can't manage a relationship with an entity

that isn't among the covered entities.

 In the example in our entity model, the service UserService can't update the userrole because the

entity role doesn't exist, it belongs to the RoleService. The persistence handler will then set the roleid

in table userrole attribute to NULL. QS solves this problem by allowing Role to be in the UserService

service as a guest. This is possible because there is only one database that is used by both

UserService and RoleService.

Transaction management
In the same way that the discussion about one or more databases should be used, there is a

corresponding discussion about distributed transactions. QS advocates 2-phase commit and Jakarta

Transactions with annotations. When the service providers call each other to perform a task, it is a

great advantage to be able to trust that all updates are made, that the transaction is ACID (Atomicity,

Consistency, Isolation, Durability). This satisfies 2-phase/XA transaction handlers which are the ones

found in application servers. Messages and other features may also be included in the transactions.

Also, no code needs to be written to compensate for a failed update (SAGA Pattern) and the database

is always consistent, which provides high quality information.

Communication Star Trek Communicator

All communication from the business logic in QS passes through a "Communicator" as the business

logic should not know how a call is made. It could be sent as a message or with an RPC call or an

internal REST call, it is determined by the implementation in the Communicator which also makes

translations between the formats used externally and the formats, DTO, used by QS.

QS has rules for how communication should be done. The picture below shows how two servicemen

can communicate with each other and with the outside world. Should an additional mode of

communication be added, for example, the Jakarta RPC, the logic for this communication can be

placed in a new Communicator session prayer.

Jan Nilsson Quantum Satis 2024-07-18 Page 10 (V 0.6)

As you can see in the picture, REST is implemented on the local interface even though it is for

external communication. The reason is that the exposure to available methods of attack is decreasing.

If REST had instead been implemented in the Remote interface, the methods would be callable with,

for example, CORBA as common façade methods

In each service i.e., UserService, there is at least one stateless session bean for the entity that is

primary and its related entities. Every communication bean is also a stateless session bean.

Data Transfer Objects
QS has a specific structure for how data to and from QS should be formatted. Data managed by QS

should be in maps. The maps correspond to all the columns in the corresponding table, i.e. all the

attributes in the entity. The key in the key/value pairs in the map is the code-generated constant

EA_ENTITY_ATTRIBUTE and the value is an object. DTO means that no entities should be used by

external resources such as clients or other services. These should use DTOs that contain only Java

objects. QS does not detach entities. See the Metadata chapter for more information on the

constants.

Below is an example of a DTO where a user is updated with name and phone, and a new login is

created and a loginhistory is deleted. All of this is done in one call to AmUserBase.write(Map map).

Jan Nilsson Quantum Satis 2024-07-18 Page 11 (V 0.6)

In our example with UserService, the maximum DTO (Data Transfer Object) that can be handled in a

call has this structure:

Jan Nilsson Quantum Satis 2024-07-18 Page 12 (V 0.6)

The UserService session bean map contains maps with the keys from the metadata:

• USER_DATA

• E_USER

• R_USER_USERROLE

o E_USER_ROLE

• R_USER_LOGINHISTORY

o E_LOGINHISTORY

• ROLE_DATA

• E_ROLE

• R_ROLE_ROLEJOB

o E_ROLEJOB

The maps that have a key that starts with R_ are HashSet with maps that contain key/value pairs

corresponding to each attribute in the entity. This means that a 1:M relationship will be in a map

with the name of the relationship, for example, R_User_Role and that every instance of Role will be

in a HashMap in that map.

Jan Nilsson Quantum Satis 2024-07-18 Page 13 (V 0.6)

Based on the contents of the map, the code for CRUD can create entities to update the database.

QS understands how the maps are structured and when information is sent to QS, not all attributes

in the DTO need to be present. QS scans the map for every known attribute and if it exists it is used,

otherwise continue processing.

QS also has several help methods, which usually have an Integer with the key to an entity as a

parameter, see under Classes.

DTO_ STATUS
Each DTO that is a relationship to the primary entity should have an attribute DTO_STATUS that can

have three different values:

• DTO_STATUS = 0 -> Updated

• DTO_STATUS = 1 -> New

• DTO_STATUS = 2 -> Removed

The primary entity and its related entities are created or updated based on calls to the create and

write methods, respectively.

Packaging

There are several ways to package QS. What is most similar to microservicing is packaging a primary

entity in a project and generating code for it.

Jan Nilsson Quantum Satis 2024-07-18 Page 14 (V 0.6)

If you choose to include both role and user entities in the same project, code will be generated for

both primary entities in the same session bean. The advantage of this is that the call between AmRole

and AmUser as well as from other classes in the service is made as pure Java calls and not as local or

remote calls between service/session beans.

Jan Nilsson Quantum Satis 2024-07-18 Page 15 (V 0.6)

Updates to entities on the yellow area are made via the AmRole/AmRoleBase class and those on the

green area via AmUser/AmUserBase. The Am classes are generated because role and user are

primary entities. The entities that are in UserService can be updated, and the outside ones are guest

entities. There is no relationship between job and orderedjob when these are guest entities.

Navigation is not possible between guest entities.

In the image above, the roles and user entities will be included both as primary entities and guest

entities. From the AmRole class, @ManytoMany the relationship to the user is perceived as the user

being the guest entity to the role. Similarly, the AmUser class perceives that role is a guest entity to

the user.

userrole is drawn as if it belonged to User, and this is to show that if there are validation rules for

userrole, they are in the AmUser class. The naming convention also means that it would have been

better to call the entity roleUser if it had belonged to the AmRole class.

The package structure and classes that QS uses for the image above are:

se.busligan.qs is replaced with the unique domain name, and userservice is the name of the project

specified in EntityModelBuilder.

Metadata
For each attribute in a constituent entity, a string constant is created with the value of the attribute

Ex: public static final String A_USER_NAME = "Name";

For each attribute in an entity, a string constant is created with the value of the entity.attribute

Ex: public static final String EA_USER_NAME = "User.Name";

For each relationship between two entities, a string constant is created with the value of the

relationship name.

Jan Nilsson Quantum Satis 2024-07-18 Page 16 (V 0.6)

Ex: public static final String R_USER_USERROLE = "User.Userrole";

All string constants are written in a file with the name of the service with the Metadata Ex:

UserserviceMetadata.java extension and placed in the same directory as the session prayer. Other

Java-based clients of this service can import the class to facilitate the build-up of DTO to QS.

Example of generated metadata:

Classes
QS is based on standardized code being in an abstract base class and the unique business code for the

system is written in classes that extend the base class.

Jan Nilsson Quantum Satis 2024-07-18 Page 17 (V 0.6)

Base classes should not be edited by developers of the business system, but managed by developers

who master the QS model.

The image shows the methods that are available in AmUserBase. The methods handle all read and

write to all entities associated with the primary User entity.

All public methods are also available in UserServiceBase with calls to the methods in AmUserBase.

Jan Nilsson Quantum Satis 2024-07-18 Page 18 (V 0.6)

To read and update the primary entity and its relationships, a pattern is used to automate the flow. To

create a primary entity and relationships, the create method is used.

All columns that are not null in the primary entity must be in the folder that is submitted. After

validating the folder, the primary entity is created and then write is called, which updates the primary

entity's other columns and creates entities for the relationships.

When the primary entity or any relationship is to be updated, write is called which does a validation

of the map and then updates the primary entity and entities for the relationships

In other words, it is the same methods and flow for all management after the primary entity is

created.

Jan Nilsson Quantum Satis 2024-07-18 Page 19 (V 0.6)

Tool
To facilitate development with QS, there are a number of tools. There are tools for:

• Create an entity model

• Generate Java Code

• Generate package structure

• Generate local and remote interfaces

• Create client libraries

EntityModelBuilder
EntityModelBuilder is a Swing application where the entities are registered with attributes, tags, and

relationships. It is also possible to register enumerations used in the business system. Via various tabs

in the application, entities, attributes, annotation tags, enumerations, relationships, etc. are recorded.

The model can then be packaged into session beans in different ways, which affects code generation.

It is also from EntityModelBuilder that code generation is done.

Jan Nilsson Quantum Satis 2024-07-18 Page 20 (V 0.6)

EntityModelBuilder Data Model:

For packaging, you can choose which service an entity belongs to. It is also possible to version

manage different variants. QS generates code based on a project where package names, domain

names, etc. are registered.

Jan Nilsson Quantum Satis 2024-07-18 Page 21 (V 0.6)

Data model for packaging entities in EntityModelBuilder:

Code Generation
QS is based on the entity model registered in the database, which is then used to generate code for

entity beans, and session beans so that all basic CRUD (Create, Read, Update, Delete) works for the

entire model. The code is compilable and can perform CRUD operations in an application server

immediately after compiling and deploying.

Packages and classes
All classes in the image below, including the package structure, are generated by QS.

Jan Nilsson Quantum Satis 2024-07-18 Page 22 (V 0.6)

Metadata
The metadata code generation has created string constants for all entity attributes and all

relationships in the entity model. See more under the chapter Metadata.

Remote and Local Facades
Facades for remote and local interfaces are generated by two processors. Annotate selected methods

with @RemoteInterface respective @LocalInterface and register the annotation processor with your

development tool and the interface will be generated during compilation. Annotations should be

made in the sessionbean, in the example in UserService.java. That's what is exposed according to

standards. It is possible to place the annotations in other classes, but the design pattern prefers that

it is in the session bean that it is made.

All public methods that QS generates in AmUserBase are also generated to UserServiceBase.java with

calls to AmUserBase.java.

No facades therefore need to be kept in sync with the business logic, QS generates these during

compilation for all generated methods.

Client library
QS also has scripts to compile the interface as well as the metadata file (UserMetadata.java) and

make a jar file that can be used by clients. Depending on the development tool, the script may need

to be modified and moved. For Netbean's default EAR project, the command file is placed in the root

of the project.

