
Streamlining Jakarta EE 11 Development with
Payara and start.jakarta.ee: A Hands-On Guide

Jakarta EE 11, the latest evolution of enterprise Java, brings a wealth of new features and
improvements for building robust, scalable applications. Combined with Payara Server, a
developer-friendly Jakarta EE runtime, and start.jakarta.ee, a handy project generator, the
development process becomes smoother than ever. In this guide, we'll walk you through
building a sample Jakarta EE 11 application on Payara, highlighting some of the features along
the way.

Setting Up Your Development Environment

Before we dive into coding, let's ensure your environment is ready:

1. JDK Installation: Make sure you have JDK 21 installed. You can download it from the
official Oracle website or use a package manager like SDKMAN!

2. Maven: We will use Maven for dependency management, so install it using SDKMAN or
the Maven website.

3. IDE: Install your preferred IDE. We'll not use anything IDE-specific here, but I use IntelliJ
IDEA, a popular choice among Java developers.

Once these tools are ready, we'll create the project structure from start.jakarta.ee.

Embracing start.jakarta.ee

start.jakarta.ee is your gateway to a streamlined project setup. Here's how to use it:

1. Navigate to https://start.jakarta.ee/. This service will set up all the essential
dependencies for an application. The current version of the Starter only supports Maven.
In the future, we may be able to choose between Gradle and Maven.

2. Select the desired version of Jakarta EE from the available options (Figure 1). Currently,
the options include Jakarta EE 8, Jakarta EE 9.1, and Jakarta EE 10. In addition, you
may choose the Jakarta EE Platform or one of the Jakarta EE profiles (Web, Core). For
this project, we have chosen the Jakarta EE 10 Platform, Java SE 17, and Payara as a
Runtime. Although we intend to use Jakarta EE 11, this starter does not yet support 11,
but no worries; as we proceed, we will show you how to upgrade to Jakarta EE 11 and
JDK 21.

3. Once you have selected your desired options, click the generate button. This will give
you the project structure and sample code you can build and run.

https://jakarta.ee/specifications/platform/11/
http://start.jakarta.ee
https://www.payara.fish/
https://sdkman.io/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://start.jakarta.ee/

Figure 1: Jakarta EE starter project generation tool

Let's explore the code structure.

When we unpack the generated code, we will have the structure of an application. We can open
it in our favourite IDE and run it from the command line.

.
├── README.md
├── mvnw
├── mvnw.cmd
├── pom.xml
└── src
 └── main
 ├── java
 │ └── org
 │ └── eclipse
 │ └── jakarta
 │ └── hello
 │ ├── Hello.java
 │ ├── HelloApplication.java
 │ └── HelloWorldResource.java
 └── webapp
 ├── WEB-INF
 │ └── web.xml
 ├── images
 │ └── jakartaee_logo.jpg
 └── index.html

This generated source code comes with an embedded Maven wrapper. So, if you want to use it,
make sure you run the following command first for Unix environments (Linux or Mac):

$ chmod +x mvnw

Since we are using Payara as a runtime, the following command will download the runtime and
run the application.

./mvnw clean package cargo:run

We are using the cargo plugin, which allows you to manipulate various types of Jakarta EE
runtimes in a standard way. It will download the Payara runtime and run the Payara application
server along with our application so that we don’t have to maintain a separate server instance
while developing. This helps us speed up the development process.

If you hit the browser with the following URL, you will see the result.

http://localhost:8080/jakartaee-hello-world/

This starter application comes with a basic setup of the following Rest Endpoint.

https://codehaus-cargo.github.io/cargo/Home.html

curl -X GET

"http://localhost:8080/jakartaee-hello-world/rest/hello?name=Balzur"

If we curl it, it will return the following output:

{

 "hello": "Balzur"

}

Upgrading to Jakarta EE 11 and JDK 21

Now that the basic setup is ready, we will make progress on upgrading Jakarta EE 11 and JDK
21. We will probably not be able to touch every feature, but we will try to use the most important
one, which is the ability to use virtual threads and a few others.

Let's begin upgrading the project to Jakarta EE 11 and JDK 21.

For that, open the pom.xml and change the following properties.

<maven.compiler.release>21</maven.compiler.release>

<jakartaee-api.version>11.0.0-M3</jakartaee-api.version>

<payara.version>7.2024.1.Alpha1</payara.version>

That's all we need. We are using 7.2024.1.Alpha1, as this supports Jakarta Concurrency 3.1,
which supports virtual threads.

Run it like we did earlier and see if everything is running perfectly.

Project Idea

For this project, we need a simple app idea. The one I have come up with is as follows: The app
will receive a website's URL through an endpoint, fetch the metadata from the website, and
store it in the database. The idea is as simple as that.

This functionality could be valuable for various real-world applications. For instance, consider a
marketing firm that needs to analyze the metadata of competitor websites to gain insights into
their SEO strategies, content keywords, and social media engagement. This application could
automate data-gathering, saving the firm valuable time and resources. The metadata could then
generate reports, inform marketing strategies, and improve the firm's online presence.

We will implement a scheduler to automate the process of fetching metadata from the URLs
stored in the database. The scheduler will periodically check for new tasks (URLs) in the

https://projects.eclipse.org/projects/ee4j.cu/releases/3.1

database, fetch the metadata from these URLs, and update the task status accordingly. This will
ensure our application continuously processes new URLs and keeps the metadata up-to-date
without manual intervention.

Creating an Endpoint to Receive the URL

The next step is to create an endpoint to receive the URL. Let's call it TaskResource.

package org.eclipse.jakarta.hello;

import jakarta.validation.Valid;

import jakarta.ws.rs.*;

import jakarta.ws.rs.core.MediaType;

import jakarta.ws.rs.core.Response;

import java.util.logging.Logger;

@Path("/tasks")

public class TaskResource {

 private final Logger logger =

Logger.getLogger(TaskResource.class.getName());

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 public Response createTask(@Valid TaskDTO taskDTO) {

 logger.info("TaskResource.createTask() called with taskDTO: " +

taskDTO);

 return Response.accepted().build();

 }

}

The jakarta.ws.rs.Path annotation establishes a connection between the URL given by
the user and the Java class responsible for handling the request. The jakarta.ws.rs.GET
annotation tells us we must use the HTTP GET method to access our endpoint. The
jakarta.ws.rs.Produces annotation and allows you to specify the format of the response.
In our case, it will produce a JSON1 response, but the above endpoint will not return anything
but will return the 201 status code.

1 JSON - It stands for JavaScript Object Notation. JSON is a text format for storing and transporting
data

http://jakarta.ws.rs.path
http://jakarta.ws.rs.get
https://datatracker.ietf.org/doc/html/rfc9110#name-get
http://jakarta.ws.rs.produces
https://datatracker.ietf.org/doc/html/rfc9110#name-201-created

curl -X POST -H "Content-Type: application/json" -d '{"url":

"https://bazlur.ca"}'

http://localhost:8080/jakartaee-hello-world/rest/tasks -i

The output of the above curl command would be:

HTTP/1.1 201 Created

Server: Payara Server 7.2024.11 #badassfish

X-Powered-By: Servlet/6.0 JSP/3.1 (Payara Server 7.2024.11 #badassfish

Java/Oracle Corporation/21)

Location: http://localhost:8080/tasks/3

Content-Length: 0

X-Frame-Options: SAMEORIGIN

At this point, this endpoint doesn't do anything but only takes a task and logs it. As you can see,
we have used the @Valid annotation before TaskDTO, which means this will automatically
perform validation, which is part of the Jakarta Validation specification.

Defining TaskDTO

Let's look at the TaskDTO:

public record TaskDTO(

 @NotEmpty(message = "The URL field is mandatory and must not be

empty.")

 @Pattern(regexp = "^(http|https)://.*$", message = "The input

provided is not a valid URL. Please provide a valid URL.")

 String url

) {}

As you can see, we've utilized Java records, which simplify the creation and use of Data
Transfer Objects (DTOs). A key advantage of records is their seamless integration with Jakarta
Validation annotations, allowing for convenient and efficient data validation. We have used two
constraints: NotEmpty and Pattern. So, if we pass a valid URL, the endpoint will return an
HTTP 400 status code with a default error response.

However, to make the error message a bit more friendly, we have to add the following Exception
Mapper class, which the @Provider annotation will automatically register.

import jakarta.validation.ConstraintViolation;

import jakarta.validation.ConstraintViolationException;

https://jakarta.ee/specifications/bean-validation/3.0/apidocs/jakarta/validation/valid
https://jakarta.ee/specifications/bean-validation/3.1/
https://jakarta.ee/specifications/bean-validation/3.0/apidocs/jakarta/validation/constraints/notempty
https://jakarta.ee/specifications/bean-validation/3.0/apidocs/jakarta/validation/constraints/pattern
https://datatracker.ietf.org/doc/html/rfc9110#name-400-bad-request
https://jakarta.ee/specifications/restful-ws/4.0/apidocs/jakarta.ws.rs/jakarta/ws/rs/ext/provider

import jakarta.ws.rs.core.Response;

import jakarta.ws.rs.ext.ExceptionMapper;

import jakarta.ws.rs.ext.Provider;

import java.util.HashMap;

import java.util.Map;

@Provider

public class ConstraintViolationExceptionMapper implements

ExceptionMapper<ConstraintViolationException> {

 @Override

 public Response toResponse(ConstraintViolationException exception) {

 Map<String, String> response = new HashMap<>();

 for (ConstraintViolation<?> violation :

exception.getConstraintViolations()) {

 response.put(violation.getPropertyPath().toString(),

violation.getMessage());

 }

 return

Response.status(Response.Status.BAD_REQUEST).entity(response).build();

 }

}

Now, if we post an invalid URL, it will return the validation error as follows:

curl -X POST -H "Content-Type: application/json" -d '{"url": "some-url"}'

http://localhost:8080/jakartaee-hello-world/rest/tasks -i

HTTP/1.1 400 Bad Request

Server: Payara Server 7.2024.11 #badassfish

X-Powered-By: Servlet/6.0 JSP/3.1 (Payara Server 7.2024.11 #badassfish

Java/Oracle Corporation/21)

Content-Type: application/json

Connection: close

Content-Length: 92

X-Frame-Options: SAMEORIGIN

{"createTask.arg0.url":"The input provided is not a valid URL. Please

provide a valid URL."}%

Storing Tasks in the Database

Now that this endpoint is ready, let's save the task in the database. First, let's create an Entity.

import jakarta.persistence.*;

import java.io.Serializable;

import java.time.Instant;

import java.util.Map;

@Entity

public class Task implements Serializable {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long taskId;

 @Version

 private Long version;

 private String inputUrl;

 @Enumerated(EnumType.STRING)

 private Status status;

 private Instant createdAt;

 private Instant updatedAt;

 private Instant completedAt;

 @ElementCollection

 @MapKeyColumn(name = "meta_key")

 @Column(name = "meta_value")

 @CollectionTable(name = "meta_data", joinColumns = @JoinColumn(name =

"task_id"))

 private Map<String, String> metaData;

 @PrePersist

 public void onPrePersist() {

 this.createdAt = Instant.now();

 this.status = Status.NEW;

 }

 @PreUpdate

 public void onPreUpdate() {

 this.updatedAt = Instant.now();

 }

 // getter/setter

}

The Task entity now uses Instant to store datetime values, ensuring consistency across
different locations by storing event timestamps in UTC. The support of Instant is the new
addition Jakarta EE 11.

The Status enum:

public enum Status {

 NEW,

 IN_PROGRESS,

 COMPLETED,

 FAILED

}

Configuring Data Source

We are using H2, an in-memory database, for this example, but feel free to use any database.

Open your web.xml file and add the following configuration:

<data-source>

 <name>java:global/myDataSource</name>

 <class-name>org.h2.jdbcx.JdbcDataSource</class-name>

 <url>jdbc:h2:mem:test</url>

</data-source>

Configuring Jakarta Persistence

The next step is configuring the database connection by creating a Jakarta Persistence
configuration file named persistence.xml. This file can be placed under the
resources/META-INF folder in our project. If you don't have the resource folder in your
project structure, just create one.

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/time/Instant.html
https://www.h2database.com/html/main.html

The persistence.xml file allows us to specify the JDBC Connection Settings or the
Datasource JNDI name.

<?xml version="1.0" encoding="UTF-8"?>

<persistence

xmlns="[https://jakarta.ee/xml/ns/persistence](https://jakarta.ee/xml/ns/pe

rsistence)"

xmlns:xsi="[http://www.w3.org/2001/XMLSchema-instance](http://www.w3.org/20

01/XMLSchema-instance)"

xsi:schemaLocation="[https://jakarta.ee/xml/ns/persistence](https://jakarta

.ee/xml/ns/persistence)

[https://jakarta.ee/xml/ns/persistence/persistence_3_2.xsd](https://jakarta

.ee/xml/ns/persistence/persistence_3_2.xsd)"

 version="3.2">

 <persistence-unit name="tasks">

 <jta-data-source>java:global/myDataSource</jta-data-source>

 <properties>

 <property

name="jakarta.persistence.schema-generation.database.action"

value="drop-and-create"/>

 <property name="eclipselink.logging.level.sql" value="FINE"/>

 <property name="eclipselink.logging.parameters" value="true"/>

 <property name="hibernate.show_sql" value="true"/>

 <property name="eclipselink.ddl-generation"

value="create-tables"/>

 <property name="eclipselink.ddl-generation.output-mode"

value="database"/>

 </properties>

 </persistence-unit>

</persistence>

The persistence.xml file sets up a persistence unit named "tasks". It specifies the JNDI
name of the JDBC datasource to be used for database connection management, which is
"java:global/myDataSource" as already specified in web.xml.

The <properties> element contains several properties that configure the behavior of the
Jakarta Persistence provider. For example, the
"jakarta.persistence.schema-generation.database.action" property in the
persistence.xml file specifies the action to be taken by the Jakarta Persistence provider when
generating the database schema. Some options are:

● none: The Jakarta Persistence provider won’t generate the database schema.
● create: The Jakarta Persistence provider will create the database schema.
● drop: The Jakarta Persistence provider will drop the database schema.
● drop-and-create: The Jakarta Persistence provider will drop the existing database

schema and create a new one.

Other properties configure logging for the Jakarta Persistence provider, such as
"eclipselink.logging.level.sql" and "eclipselink.logging.parameters". Finally, the
"hibernate.show_sql" property enables SQL query logging for the Hibernate Jakarta
Persistence provider.

Setting Up the Jakarta Persistence Repository

Next, create a TaskRepository class responsible for handling the Task entity's Create, Read,
Update, and Delete (CRUD) operations:

import jakarta.transaction.Transactional;

import java.util.List;

import jakarta.ejb.Stateless;

import jakarta.persistence.EntityManager;

import jakarta.persistence.PersistenceContext;

@Stateless

public class TaskRepository {

 @PersistenceContext

 private EntityManager em;

 @Transactional

 public Task save(Task task) {

 return em.merge(task);

 }

 public List<Task> findAll() {

 return em.createQuery("SELECT t FROM Task t",

Task.class).getResultList();

 }

 public List<Task> findByStatus(Status status) {

 return em.createQuery("SELECT t FROM Task t WHERE t.status =

:status", Task.class)

 .setParameter("status", status)

 .getResultList();

 }

}

The class is annotated with @Stateless, which makes it a stateless session bean. A Stateless
session bean is a type of Enterprise JavaBean (EJB) that is used for implementing business
logic in Jakarta EE applications. Stateless session beans are designed for scenarios where the
bean does not need to maintain any conversational state with the client between method
invocations. In other words, a Stateless session bean doesn't remember any client-specific data
between method calls.

The EntityManager is the primary interface for managing entities in Jakarta Persistence. It is
annotated with @PersistenceContext, which automatically injects an instance of the
EntityManager into the class.

Now, let's update our TaskResource to be able to use this repository.

Updating TaskResource

Now, update TaskResource to use this repository:

package org.eclipse.jakarta.hello;

import jakarta.inject.Inject;

import jakarta.validation.Valid;

import jakarta.ws.rs.*;

import jakarta.ws.rs.core.MediaType;

import jakarta.ws.rs.core.Response;

import java.net.URI;

import java.util.List;

import java.util.logging.Logger;

@Path("/tasks")

public class TaskResource {

 private final Logger logger =

Logger.getLogger(TaskResource.class.getName());

 private final TaskRepository taskRepository;

 @Inject

 public TaskResource(TaskRepository taskRepository) {

https://jakarta.ee/specifications/enterprise-beans/4.0/apidocs/jakarta/ejb/stateless
https://jakarta.ee/specifications/persistence/3.2/apidocs/jakarta.persistence/jakarta/persistence/entitymanager
https://jakarta.ee/specifications/persistence/3.2/apidocs/jakarta.persistence/jakarta/persistence/persistencecontext

 this.taskRepository = taskRepository;

 }

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 public Response createTask(@Valid TaskDTO taskDTO) {

 logger.info("TaskResource.createTask() called with taskDTO: " +

taskDTO);

 Task task = new Task();

 task.setInputUrl(taskDTO.getUrl());

 Task savedTask = taskRepository.save(task);

 return Response.created(URI.create("/tasks/" +

savedTask.getTaskId())).build();

 }

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public List<Task> getAllTasks(@QueryParam(value = "status") Status

status) {

 if (status == null) {

 return taskRepository.findAll();

 }

 return taskRepository.findByStatus(status);

 }

}

Creating a Scheduler

Now that we have a record, we will create a scheduler to periodically pull the tasks and execute
them.

package org.eclipse.jakarta.hello;

import jakarta.annotation.Resource;

import jakarta.ejb.Lock;

import jakarta.ejb.LockType;

import jakarta.ejb.Schedule;

import jakarta.ejb.Singleton;

import jakarta.enterprise.concurrent.ManagedExecutorDefinition;

import jakarta.enterprise.concurrent.ManagedExecutorService;

import jakarta.inject.Inject;

import jakarta.transaction.Transactional;

import org.jsoup.Jsoup;

import org.jsoup.nodes.Document;

import org.jsoup.nodes.Element;

import org.jsoup.select.Elements;

import java.io.IOException;

import java.time.Instant;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.logging.Level;

import java.util.logging.Logger;

@Singleton

@ManagedExecutorDefinition(

 name = "java:app/concurrent/taskScheduler",

 hungTaskThreshold = 120000,

 virtual = true

)

public class TaskScheduler {

 private static final Logger logger =

Logger.getLogger(TaskScheduler.class.getName());

 @Inject

 private TaskRepository taskRepository;

 @Resource(lookup = "java:app/concurrent/taskScheduler")

 private ManagedExecutorService taskScheduler;

 @Schedule(hour = "*", minute = "*", second = "*/10", persistent =

false)

 public void pullTask() {

 List<Task> newTasks = taskRepository.findByStatus(Status.NEW);

 newTasks.forEach(this::execute);

 }

 @Transactional

 private void execute(Task task) {

 task.setStatus(Status.IN_PROGRESS);

 taskRepository.save(task);

 taskScheduler.execute(() -> processTask(task));

 }

 private void processTask(Task task) {

 try {

 String inputUrl = task.getInputUrl();

 logger.info(String.format("Fetching content from URL: %s

executing on thread: %s",

 inputUrl, Thread.currentThread()));

 task.setMetaData(extractAllMetadata(inputUrl));

 task.setStatus(Status.COMPLETED);

 task.setCompletedAt(Instant.now());

 taskRepository.save(task);

 } catch (Exception e) {

 logger.log(Level.SEVERE, "Failed to fetch content from URL: " +

task.getInputUrl(), e);

 updateTaskStatusToFailed(task);

 }

 }

 private Map<String, String> extractAllMetadata(String inputUrl) {

 Map<String, String> metadata = new HashMap<>();

 try {

 Document doc = Jsoup.connect(inputUrl).get();

 extractMetaTags(doc, metadata);

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 return metadata;

 }

 private void extractMetaTags(Document doc, Map<String, String>

metadata) {

 Elements metaTags = doc.getElementsByTag("meta");

 for (Element metaTag : metaTags) {

 String name = metaTag.attr("name");

 String property = metaTag.attr("property");

 String content = metaTag.attr("content");

 if (!name.isEmpty()) {

 metadata.put(name, content);

 } else if (!property.isEmpty()) {

 metadata.put(property, content);

 }

 }

 }

 @Transactional

 private void updateTaskStatusToFailed(Task task) {

 task.setStatus(Status.FAILED);

 taskRepository.save(task);

 }

}

This class is designated a Singleton EJB to ensure a single instance throughout the application.
The magic happens with the @ManagedExecutorDefinition annotation:

● name: Establishes a JNDI lookup name ("java:app/concurrent/taskScheduler")
for the managed executor service.

● hungTaskThreshold: Configures a 120-second threshold for detecting and potentially
mitigating tasks that run too long.

● virtual = true: This is the key to utilizing virtual threads, a new feature in JDK 21 and
Jakarta EE 11. Virtual threads are lightweight and designed for high throughput, making
them perfect for concurrent task processing needs.

By injecting the ManagedExecutorService and setting it to use virtual threads, the
application can concurrently fetch and process URLs without the overhead of traditional threads,
significantly enhancing scalability and resource utilization. This is a part of Jakarta Concurrency
3.1 specification.

The core workflow begins with a scheduled task-pulling mechanism triggered every 10 seconds.
New tasks, identified by a "NEW" status, are fetched from the TaskRepository and passed to
the execute() method. This method marks the task as "IN_PROGRESS" and saves its state to
the database. The task is then submitted to the taskScheduler, our virtual thread-powered
executor service, for processing.

The taskScheduler intelligently distributes tasks among virtual threads, each operating
independently. Each thread fetches content from the task's URL using JSoup. JSoup is a Java
library specifically designed to work with HTML. It provides a convenient way to parse HTML
documents, extract data, and manipulate the document's structure.

https://jakarta.ee/specifications/concurrency/3.1/apidocs/jakarta.concurrency/jakarta/enterprise/concurrent/managedexecutordefinition
https://jakarta.ee/specifications/concurrency/3.1/apidocs/jakarta.concurrency/jakarta/enterprise/concurrent/managedexecutorservice
https://jakarta.ee/specifications/concurrency/3.1/
https://jakarta.ee/specifications/concurrency/3.1/
https://jsoup.org/

Upon successful metadata extraction, the thread updates the task's status to "COMPLETED" and
records the completion time in the database. Any errors during fetching or processing are
handled by marking the task as "FAILED."

The use of virtual threads brings significant advantages. They are lightweight and consume
minimal resources compared to traditional threads. The ManagedExecutorService efficiently
manages a large pool of virtual threads, enabling concurrent processing of numerous tasks
without overwhelming the system. Additionally, virtual threads simplify handling asynchronous
operations, leading to cleaner and more maintainable code.

Checking the Application

Once you add those, run the application and create a Task using the createTask endpoint.
Then navigate to the following log file:

target/cargo/configurations/payara/cargo-domain/logs/server.log

You will find something like this:

[2024-06-24T21:21:40.059-0400] [Payara 7.2024.1.Alpha1] [INFO] []

[org.eclipse.jakarta.hello.TaskScheduler] [tid: _ThreadID=232 _ThreadName=]

[timeMillis: 1719278500059] [levelValue: 800] [[

 Fetching content from URL: https://bazlur.ca/ executing on thread:

VirtualThread[#232]/runnable@ForkJoinPool-1-worker-1]]

This proves that the metadata extraction happens over the virtual threads.

If you want to get the extracted data, you can hit the following endpoint:

curl -X GET -H "Content-Type: application/json"

http://localhost:8080/jakartaee-hello-world/rest/tasks

You will get something like the following:

[

 {

 "completedAt": "2024-06-25T01:21:43.681362Z",

 "createdAt": "2024-06-25T01:21:33.853564Z",

 "inputUrl": "https://bazlur.ca/",

 "metaData": {

 "generator": "WordPress 6.5.4",

 "og:title": "Home-2 - A N M Bazlur Rahman",

 "og:site_name": "A N M Bazlur Rahman",

 "og:url": "https://bazlur.ca/"

 },

 "status": "COMPLETED",

 "taskId": 1,

 "updatedAt": "2024-06-25T01:21:43.682656Z",

 "version": 3

 }

]

Conclusion

Following this guide, you have successfully set up a Jakarta EE 11 application with Payara,
created endpoints, and added a scheduler using virtual threads. This setup demonstrates the
power and flexibility of Jakarta EE 11 and JDK 21, making development more efficient and
scalable.

To verify the application, run it and create a task using the createTask()’s (POST /tasks)
endpoint. Then, check the server logs to see the metadata extraction process happening over
virtual threads. You can fetch the extracted data using the getAllTasks()’s (GET /tasks)
endpoint.

The source code is available on GitHub.

This setup enhances scalability and resource utilization, ensuring smooth operation even under
heavy workloads, thanks to virtual threads. Happy coding!

https://github.com/rokon12/payara-jakartaee-hello-world

