
Typesafe REST Calls With
MicroProfile REST Client
MicroProfile 6

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. User Guide

Typesafe REST Calls With MicroProfile REST Client

Guide Updated: June 2023Contents

What is MicroProfile? 	 1

Getting Started with MicroProfile 2

MicroProfile REST Client 2

Your Rest Interface 	 3

RestClientBuilder 5

Specifying the URL/URI 6

Specifying the connectTimeout 6

Specifying the readTimeout 6

Building the RestClientBuilder 6

Registering custom Jakarta REST Components 7

REST Client and Other MP APIs 8

REST Client with CDI 8

Summary 13

Conclusion	 14

Typesafe REST Calls With MicroProfile REST Client

1

In a cloud native, microservices era, almost all applications need to interface with other services,
both internal and external, through the standard HTTP protocol. There are different ways to consume
REST services in a Jakarta EE application, from use of the HTTP client in Java SE, to Jakarta REST
client to MicroProfile REST client. Almost all other options for consuming RESTful resources in an
application can be cumbersome, verbose, and in some cases, require some plumbing.

The MicroProfile REST client, built on top of Jakarta REST, is a typesafe, easy to use client that
abstracts you from the low level HTTP infrastructure. This guide will show you how to use this API
in your Jakarta EE applications to create much more readable and maintainable applications that
consume REST services in a typesafe way.

What is MicroProfile?

MicroProfile is a community driven initiative, built on top of the Jakarta EE Core Profile, that is a
collection of abstract specs that form a complete solution to developing cloud native, Jakarta EE
microservices. The goal is to create a set of APIs that abstracts you from their implementations so
that you can create highly portable microservices across vendors.

The current release is version 6.0 which is a major release that includes MicroProfile Config 3.0,
MicroProfile Fault Tolerance 4.0, MicroProfile Health 4.0, MicroProfile Metrics 5.0, and MicroProfile
Rest Client 3.0. MicroProfile 6.0 is built on top of the Core Profile of Jakarta EE, a slimmed down ver-
sion of Jakarta EE “that contains a set of Jakarta EE Specifications targeting smaller runtimes suitable
for microservices and ahead-of-time compilation.” The Core Profile of Jakarta EE was released as
part of Jakarta EE 10. MicroProfile 6.0 is incompatible with versions of Jakarta EE below 10.

As abstract specifications, the various implementations are free to implement the base specs and
add custom features on top. Payara Server is one of the popular implementations of the MicroProfile
spec and adds quite a number of custom features on top of the base specs. You can download a free
trial of Payara Enterprise here to follow along with the rest of the guide.

https://www.payara.fish/page/payara-enterprise-downloads
https://www.payara.fish/page/payara-enterprise-downloads

2

Getting Started with MicroProfile

To get started with the MicroProfile API, you need to include it as a dependency in your project as
shown below.

 <dependency>
 <groupId>org.eclipse.microprofile</groupId>
 <artifactId>microprofile</artifactId>
 <version>6.0</version>
 <type>pom</type>
 <scope>provided</scope>

 </dependency>

With the MicroProfile API dependency in place, you have access to all the APIs of the project. In our
case, the Payara Server will provide the implementation for us.

MicroProfile REST Client

What is the MicroProfile Rest Client? The MP REST Client is an API that abstracts the use of the
Jakarta REST client in the fetching of HTTP resources across the network. To understand better, let
us take a simple example of making a REST call to the freely available REST Countries resource -
https://restcountries.com - to get information about a given country. The full resource path is https://
restcountries.com/v3.1/name/{country} where the country path param is the name of the country
for which information we are interested in.

The sample call below shows a typical invocation using the Jakarta REST client that ships with
Jakarta EE 10.

Options for Serverless in Java

https://restcountries.com
https://restcountries.com/v3.1/name/{country}
https://restcountries.com/v3.1/name/{country}

Typesafe REST Calls With MicroProfile REST Client

3

 public Country fetchCountryInfo(final String countryName) {
 Client client = ClientBuilder.newClient();
 Response response = client.target("https://restcountries.com")
 .path("v3.1")
 .path("name")
 .path(countryName)
 .request()
 .accept(MediaType.APPLICATION_JSON)
 .get();

 return response.readEntity(Country.class);

 }

Method fetchCountryInfo takes a String as the name of the country whose information we want
to fetch from the REST Countries resource. It then creates a new instance of the Jakarta REST Client
and uses it to target the requisite resource, passing in the country name as the path-param. The
method then returns the Country as read from the entity field on the Response object.

The problem with the above snippet is that it is first, verbose. Secondly, it is not typesafe. The sin-
gle invocation above would not be much of a problem in small applications. However, in a complex,
microservices based application with a substantial number of services that have complex interde-
pendencies, it becomes hard to see at a glance what method from which service is being invoked.

The goal of the MP REST Client API is to allow you to invoke REST resource methods directly. That
is, you should be able to invoke resource methods directly on instances of the objects that declare
them similar to how you would invoke a method on any Java object.

Your Rest Interface
So how do we convert the above Jakarta REST Client invocation on the REST Countries API to a MP
REST Client call? Let us start by creating a simple Java interface as shown below.

@Path("v3.1")
@Produces(MediaType.APPLICATION_JSON)
public interface RestCountriesClient {

 @GET
 @Path("name/{country}")
 List<Country> getCountriesByName(@PathParam("country") @NotEmpty String
country);

}

Typesafe REST Calls With MicroProfile REST Client

4

In the above snippet, we declare interface RestCountriesClient with a single method -
getCountriesByName. The interface is marked as a Jakarta REST resource with the @Path
annotation, giving it a value of “rest/3.1”, capable of producing JSON type. The interface has method
getCountriesByName, which takes a path parameter of type string, as the name, or part of it, to
search for. So, for instance, you can pass either “Ghana” or “gh”. The first one will return data for
just that country, and the second one will return data for all country names that have “gh” in them.

The type of the List returned by method getCountriesByName - Country - is the Java representation
of the JSON object returned by the remote REST Countries API. Its sole purpose is for us to have a
typesafe representation of the data returned by the remote API.

The @Produces annotation in the above interface actually means that the implementation of this
interface produces MIME type JSON. This is used by the REST Client runtime to set the Accept HTTP
header. You can also declare the @Consumes annotation for a resource implementation that takes the
JSON MIME type. In this case, the runtime will use that to set the Content-Type of the HTTP header.
You can set any MIME type as long as there are respective entity providers available and registered.

By default, in the absence of an explicit MIME type declaration, the MP REST Client runtime defaults
to “application/json” for both @Consumes and @Produces. The spec requires MP runtimes to use the
JSON-B API as JSON entity provider if the runtime supports it, unless a resource method specifies
a JSON-P return type, in which case, JSON- P should be used. Our method returns a Java type, so
the JSON-B API will be used under the hood to convert the JSON object returned from the remote
API to the Java type Country.

With interface RestCountriesClient, we have a Java interface that is a Jakarta REST resource.
With the MP REST Client, we can invoke the getCountriesByName method, passing in the requi-
site arguments directly on an object of the same type as we would any other Java object. Let us see
how in the code snippet below.

 @Test

 void testGet() {

 RestCountriesClient restCountries = RestClientBuilder.newBuilder().

baseUri("https://restcountries.com/")

 .register(CustomClientRequestFilter.class)

 .build(RestCountriesClient.class);

 List<Country> united = restCountries.getCountriesByName("united");

 assertFalse(united.isEmpty());

 }

Typesafe REST Calls With MicroProfile REST Client

5

The code snippet above uses a simple JUnit test to assert our use of the MP REST Client. The test
declares a variable of our interface type RestCountriesClient, initializing it through static meth-
ods on the RestClientBuilder interface from the MP REST Client API. The implementation of the
RestClientBuilder interface will be provided by the MP runtime, in our case the Payara server.

This is a basic use of the RestClientBuilder interface, where all we do is pass in the base URI and
the class type of the Jakarta REST resource interface we want to target. In this case, we pass in our
RestCountriesClient interface.

With our restCountries Java instance, we can make normal Java invocations on it as done above by
calling the getCountriesByName, passing in the name of “Ghana” as the country whose information
we want to retrieve from the remote REST Countries API.

If you observe the use of the RestCountriesClient interface, you notice we passed in the String
“Ghana” as the parameter to the method. Of course, the method is just a Java method. However,
the resource we are targeting takes a path parameter argument. This is part of the “magic” of the
MP REST Client API. The String we passed to the method will be used - automatically - as the path
parameter in the resource path name/{country} as declared on the method getCountriesByName in
the RestCountriesClient interface.

Another thing to note is that we have no concrete implementation of the interface anywhere in our
code. The MP REST Client does not care where the implementation is. In our case, the implemen-
tation is actually the REST Countries API. The implementation could also be in our code or another
microservice. It does not matter as long as the MP REST Client can find an implementation, it will be
used. This use of the RestClientBuilder is the programmatic lookup approach. The other approach
is the CDI approach that we will look at in a bit.

RestClientBuilder
The RestClientBuilder is the entry point to the creation of a typesafe REST Client. It extends
the jakarta.ws.rs.core.Configurable interface from Jakarta REST, making it easy to register
custom Jakarta REST components while the REST Client is being built. The Payara Server platform
implementation of the MP REST Client supports the following Jakarta REST component types

•	 ClientRequestFilter
•	 ClientResponseFilter
•	 MessageBodyReader
•	 MessageBodyWriter
•	 ParamConverter
•	 ReaderInterceptor
•	 WriterInterceptor
•	 ResponseExceptionMapper

Typesafe REST Calls With MicroProfile REST Client

6

To programmatically use the RestClientBuilder, you invoke the newBuilder() method,
which is guaranteed to return a new, non-cached instance of the RestClientBuilder. The
next method you will most likely invoke is either the baseUrl() or baseUri() method. These
methods take a URL or URI object respectively. In our example, we passed in a URI initialized to
https://restcountries.com/. This URI is going to be the base URI for making requests to the
remote resource.

Specifying the URL/URI

In our case, we specified the base URI as https://restcountries.com/, and our interface is hosted
at path “v3.1,” meaning all resource method invocations on the interface will be made relative to
the full URI https://restcountries.com/v3.1. For method getCountriesByName, the runtime will
resolve the full path to https://restcountries.com/v3.1/name/ghana, where name is the path to the
method and “ghana” is the path parameter substituted at runtime.

Specifying the connectTimeout

You can set the connection timeout by calling the connectTimeout method and passing in the
maximum time out and the TimeUnit. This is similar to setting the Jakarta REST ClientBuilder’s
connectTimeout() method. You can pass in any non-negative number for the timeout value.
Passing zero means an infinite connection time out. In our example above, we did not specify any.

Specifying the readTimeout

Similar to the connectTimeout, you can specify the readTimeout on the RestClientBuilder during
build time. This method readTimeout also takes a value for the duration of the read and a TimeUnit.
A processing exception is thrown if the timeout is reached, and the read is not completed yet.

Building the RestClientBuilder

The build method of the RestClientBuilder is the final step in the creation of instances of REST
interfaces. This method takes an interface type that has Jakarta REST resource endpoint dec-
larations. In our case, we pass in the RestCountriesClient interface. It returns an instance of
the interface that you can invoke methods on as you would any Java object. The build method
throws a RestClientDefinitionException if the passed-in interface is invalid, and an
IllegalStateException if some prerequisite like the base URL/URI is not set.

There are other methods on the RestClientBuilder interface like executorService() for set-
ting the ExecutorService to be used for async requests. There is also the sslContext method
for setting the SSLContext on the RestClientObject.

https://restcountries.com/
https://restcountries.com/
https://restcountries.com/v3.1
https://restcountries.com/v3.1/name/ghana

Typesafe REST Calls With MicroProfile REST Client

7

Registering custom Jakarta REST Components

You can register your custom Jakarta REST components like ClientRequest and ClientResponse
filters on the RestClientBuilder by calling the register() method for each component. As
stated earlier, the RestClientBuilder extends the Configurable interface from Jakarta REST,
and thus you can call any of the register methods of the Configurable interface to register your cus-
tom components.

As an example, let us create a simple Jakarta REST ClientResponseFilter and register it on
our Rest Client.

public class CustomClientResponseFilter implements ClientResponseFilter {
 @Override
 public void filter(ClientRequestContext requestContext,
ClientResponseContext responseContext) throws IOException {
 System.out.println(requestContext.getProperty("org.eclipse.
microprofile.rest.client.invokedMethod"));

 }
}

The above code snippet declares class CustomClientResponseFilter, which implements the
ClientResponseFilter from the Jakarta REST API. In our implementation of the filter method,
we do a console printout of the value of property org.eclipse.microprofile.rest.client.
invokedMethod. The value of this property is mandated by the REST Client spec to be the java.
lang.reflect.Method object representing the Rest Client interface method currently being invoked.

Let us register our custom component on the RestClientBuilder interface.

 RestCountriesClient restCountries =
 RestClientBuilder.newBuilder().baseUri(apiUri)
 .register(CustomClientResponseFilter.class)
 .build(RestCountriesClient.class)

The above code snippet is a modified version of what we looked at previously. The new change is where
we call the register method on the RestClientBuilder, passing in our CustomClientFilter
class type. That is all we need to do to register our filter. A sample run of the test results in the fol-
lowing printed to the console by the response filter.

Typesafe REST Calls With MicroProfile REST Client

8

The value of the property invokedMethod prints out the return type, the name and arguments of
the method whose invocation resulted in the dispatch of the client response filter. This is how easy
it is to register your custom Jakarta REST components with the RestClientBuilder.

REST Client and Other MP APIs

REST Client with CDI

We have so far looked at programmatically initializing the RestClientBuilder interface and registering
custom components. As a part of the MicroProfile group of APIs, the REST Client API has built in
support for other APIs like Jakarta CDI and Config. We can get an instance of our RestCountriesClient
interface through the use of @Inject annotation.

The code snippet below shows our RestCountriesClient interface repurposed to be injected as a
REST Client artefact.

@Path("v3.1")
@Produces(MediaType.APPLICATION_JSON)
@RegisterRestClient(baseUri = "https://restcountries.com/v3.1")
public interface RestCountriesClient {

 @GET
 @Path("name/{country}")
 List<Country> getCountriesByName(@PathParam("country") @NotEmpty String
country);
}

The above code snippet is the RestCountriesClient we have seen to this point. The only new thing
added here is the line @RegisterRestClient, an annotation from the REST Client API that regis-
ters this interface as a RestClient artifact. We passed in one argument - baseUri - to the annotation
to identify which REST endpoint this particular interface will be targeting. All resource methods
in this interface will be invoked relative to the URI passed to the baseUri parameter of the @
RegisterRestClient annotation. In the above code snippet, an invocation of the getCountriesBy-
Name method with “ghana” as the parameter will result in a GET request being made to the endpoint
https://restcountries.com/v3.1/name/ghana.

https://restcountries.com/v3.1/name/ghana

Typesafe REST Calls With MicroProfile REST Client

9

With our REST interface registered, we can inject it anywhere as we would any CDI component. For
example, the code snippet below shows us injecting our REST interface into a CDI ApplicationScoped
service class called Controller.

@ApplicationScoped
public class Controller {

 @Inject
 @RestClient
 private RestCountriesClient restClient;
}

The above code snippet declares a field of type RestCountriesClient, annotated with the CDI @Inject
annotation. The field is then Qualified with the @RestClient CDI qualifier to explicitly tell the REST
Client to resolve this field. The use of the qualifier is optional if there is only one type of bean we are
injecting. In situations where you have more than one type of bean being injected, then you would
need to use the qualifier to make your intention to the runtime clear.

The field restClient as shown above can be used like any other Java object, because the REST
Client API spec mandates implementations to provide concrete implementations of the remote
service being invoked at runtime.

CDI Registration of Components

When using the programmatic creation of the RestClientBuilder, we used the register method to
register custom Jakarta REST components that we wanted to be available at runtime. Using the REST
Client API with CDI, we can equally register custom components using annotations as shown below.

@Produces(MediaType.APPLICATION_JSON)
@RegisterRestClient(baseUri = "https://restcountries.com/v3.1")
@RegisterProvider(value = CustomClientResponseFilter.class, priority =
Priorities.USER)
public interface RestCountriesClient {

 @GET
 @Path("name/{country}")
 List<Country> getCountriesByName(@PathParam("country") @NotEmpty String
country);
 }

Typesafe REST Calls With MicroProfile REST Client

10

The above code snippet shows our RestCountriesClient interface, annotated with @
RegisterProvider annotation passing in two parameters. The first one is the class type of the custom
component we wish to register, in our case a simple implementation of the ClientResponseFilter
interface. The second optional parameter is the priority. We can use this parameter to set the Jakarta
REST priority of this component. That is all that is needed to register custom components through
annotations.

The default CDI scope of the RestCountriesClient will be the @Default scope because we
haven’t explicitly specified any CDI scope. You can specify your resource interfaces as having any
valid CDI scope and that will be honored.

Overriding with MP Config

So far, we have seen how to define a resource interface and inject it for use as a REST Client artifact.
The values set for the @RegisterRestClient and @RegisterProvider annotations are set at
compile time. However, using the MicroProfile Config API, it is trivial to override the parameters of
these annotations at runtime by setting certain properties in a valid MP ConfigSource. For our exam-
ples, we are going to use the microprofile-config.properties file.

We can have a slimmed down version of our REST interface declaration and use the MP Config API
to provide the values at runtime.

@Produces(MediaType.APPLICATION_JSON)
@RegisterRestClient
public interface RestCountriesClient {

@GET
@Path("name/{country}")
List<Country> getCountriesByName(@PathParam("country") @NotEmpty String
country);
}

You can override the baseUri of the @RegisterRestClient annotation by setting the following
property to the value of the baseUri.

fish.payara.boundary.rest.client.RestCountriesClient/mp-rest/uri=https://
restcountries.com/v3.1.

You could also have use */mp-rest-url property instead. In either case, the value provider should
be something that can be parsed to valid object type. In case you provide both the URI and URL,
the URI takes precedence.

https://www.payara.fish/resource/Effortless-Application-Configuration-with-MicroProfile-Config/

Typesafe REST Calls With MicroProfile REST Client

11

We can also set the CDI scope we want our resource interface to be in by setting the fully qualified
class name of any CDI scope as the value to the following property.

fish.payara.boundary.rest.client.RestCountriesClient/mp-rest/scope=jakarta.

enterprise.context.ApplicationScoped

We can register our custom Jakarta REST providers by providing a comma separated list of FQN of
our components. The property-value pair below registers our ClientResponseFilter implemen-
tation CustomClientRequestFilter.

We can also set the priority of our custom components by setting a value to the */priority property
as shown below.

Priorities set through the MP Config API take precedence over those set on the component using
the @RegisterProvider annotation.

The connectTimeout and readTimout can equally be set using the following properties, respec-
tively. The default time unit is milliseconds.

Using Configuration Keys

It is possible to simplify the MP Config keys used to configure REST clients by setting a config key in
the @RegisterClient annotation that will be used. As an example, let us simplify our use of the
MP config key-value pair we have seen so far by setting a common config key.

Typesafe REST Calls With MicroProfile REST Client

12

@Produces(MediaType.APPLICATION_JSON)
@RegisterRestClient(configKey= “restCountries”)
public interface RestCountriesClient {

 @GET
 @Path("name/{country}")
 List<Country> getCountriesByName(@PathParam("country") @NotEmpty String
country);

}

The above code snippet sets the configKey parameter of the @RegisterRestClient annotation to
“restCountries.” What this means is that in the MP ConfigSource, we can use restCountries/
mp-rest/connectTimout for instance, as the property to set the connect timeout. Setting the
configKey is a way to replace the use of the FQN of the REST interface as part of the keys. For
instance, the snippet below sets the base URI using the config key as defined above.

restCountries/mp-rest/uri=https://restcountries.com/v3.1.

Async REST Client

REST client methods can be declared to be asynchronous. Such methods will be non-blocking and
will return a CompletionStage object. Let us create an async method in our RestCountriesClient.

@Produces(MediaType.APPLICATION_JSON)
@RegisterRestClient
public interface RestCountriesClient {

 @GET
 @Path("name/{country}")
 List<Country> getCountriesByName(@PathParam("country") @NotEmpty String
country);

 @GET
 @Path("region/{region}")
 CompletionStage<List<Country>> getCountryByRegion(@PathParam("region")
@NotEmpty String region);
}

Typesafe REST Calls With MicroProfile REST Client

13

The above code snippet declares method getCountryByRegion, taking a single parameter of type
String and returning a List of Country objects, wrapped in a CompletionStage object. This return
type makes the method async.

By default, the MicroProfile Rest Client implementation can determine how to implement the asyn-
chronous request. The primary requirement for the implementation is that the response from the
remote server should be handled asynchronously from the invoking method. Alternatively, you can
provide your own ExecutorService by passing an instance of it to the executorService method
on the RestClientBuilder instance during build time. The Payara Server platform uses the thread pool
of the server by default.

REST Client and Fault Tolerance

The REST Client API spec requires runtimes to ensure that the behavior of most Fault Tolerance
annotations are followed. The FT annotations @Asynchronous, @Bulkhead, @CircuitBreaker,
@Fallback, and @Retry should work as expected when used to annotate REST interface methods.

Summary

The MicroProfile REST Client API is a very simple but powerful abstraction over the Jakarta REST
Client API. The goal, as we have seen in this guide, is to help you make typesafe REST calls through
Java interfaces. We looked at how to programmatically build rest client interfaces using the
RestClientBuilder.

We also looked at how to inject rest interfaces through the use of CDI annotations. We then looked
at how to use the MP Config API to provide or override values for the configuration of a REST client
interface. The REST Client API spec goes into more detail for all aspects of the API, including SSL
configuration and hostname verification.

https://www.payara.fish/resource/build-resilient-cloud-native-applications-with-microprofile-fault-tolerance/

Typesafe REST Calls With MicroProfile REST Client

14

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2023 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Conclusion

The MP REST Client is a great way to simply REST calls in your applications. With Payara Server fully
implementing the latest MicroProfile specification, you are assured of a powerful platform on which
to run your mission critical enterprise Java workload.

Should you need further support or info about using or transitioning your enterprise Java workload
to Payara Server, please don’t hesitate to get in touch with us. We would love to hear from you. You
can also keep in touch with us on our social media platforms - Twitter, YouTube, GitHub.

If you found this guide useful, investigate the others in our MicroProfile series:

•	 Keeping Count in Jakarta EE Applications with MicroProfile Metrics
•	 Jakarta EE Application Health Check With MicroProfile Health
•	 Effortless Application Configuration with MicroProfile Config

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/contact-us-sales-request/
https://twitter.com/Payara_Fish
https://www.youtube.com/user/payarafish
https://github.com/payara
https://www.payara.fish/resource/keeping-count-in-jakarta-ee-applications-with-microprofile-metrics/
https://www.payara.fish/resource/jakarta-ee-application-health-check-with-microprofile-health/
https://www.payara.fish/resource/Effortless-Application-Configuration-with-MicroProfile-Config/

	What is MicroProfile?
	Getting Started with MicroProfile
	MicroProfile REST Client
	Your Rest Interface
	RestClientBuilder
	Specifying the URL/URI
	Specifying the connectTimeout
	Specifying the readTimeout
	Building the RestClientBuilder
	Registering custom Jakarta REST Components

	REST Client and Other MP APIs
	REST Client with CDI

	Summary
	Conclusion

