
The Complete Guide to Testing on
the Jakarta EE Platform

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. User Guide

The Complete Guide to Testing on the Jakarta EE Platform

Contents

What is Jakarta EE? 1

What is a Specification? 2

What is a Compatible Implementation? 2

What is Eclipse MicroProfile? 3

Jakarta EE Application Development Process 3

Development 4

Testing 4

Deployment 4

Jakarta EE Testing 5

Principles of Testing 5

Testing Shows the Presence of Defects, not their Absence 5

Exhaustive Testing is Impossible 5

Early Testing Saves Time and Money 5

Defects Cluster 5

Beware of the Pesticide Principle 6

Testing is Contextual 6

Absence-of-errors is a Fallacy 6

Types of Tests 6

Unit Tests 6

Integration Tests 6

Functional Tests 7

Performance Tests 7

Smoke Tests 7

Custom Test Combinations 7

Testing Libraries 8

JUnit 8

Mockito 9

Arquillian 12

Testcontainers 22

Other Test Libraries 25

Summary 26

1

The Complete Guide to Testing on the Jakarta EE Platform

The Java Platform has been the first choice for enterprise application development for many devel-
opers over the last two and half decades. There is no shortage of frameworks and platforms for
developing all kinds of software applications using the Java Programming Language. One such
platform that has stood the test of time is Jakarta EE (formerly Java EE).

This guide describes software testing on the Jakarta EE Platform. It provides a brief look at the the-
oretical foundations of Jakarta EE, followed by an overview of testing principles and finally exploring
the most popular choices for creating automated tests of Jakarta EE developed applications.

What is Jakarta EE?

Jakarta EE is a set of community developed, abstract specifications that together form a platform for
developing end-to-end, multi-tier enterprise applications. Jakarta EE is built on the Java Standard
Edition, and aims to provide a stable, reliable and vendor neutral platform on which to develop cloud
native applications.

Hitherto, Jakarta EE was called Java EE and was a property of Oracle Inc., evolved through the Java
Community Process (JCP). However, in late 2017, Oracle decided to move the platform to an open
foundation for a much broader community-led evolution. The Eclipse Foundation got chosen and
Java EE, after the transfer, got rebranded to Jakarta EE.

https://jakarta.ee/

2

What is a Specification?
As stated in the above definition, Jakarta EE is made up of a set of specifications that each cover a
specific API for solving a specific software development need. For example, the Jakarta Contexts
and Dependency Injection (Jakarta CDI) specification provides constructs for creating loosely cou-
pled applications through dependency injection. These different specifications are combined into a
single “umbrella” specification for each Jakarta EE release. As such, Jakarta EE 10 for instance, is
released under the Jakarta EE 10 specification.

More technically, a specification is a formal proposal document made to the Jakarta EE Specification
Committee through the Jakarta EE Specification Process (JESP) that outlines the functions of a given
set of APIs. This document outlines what the expected behaviour should be for various invocations
of the API. The specification then acts as the blueprint for the API.

What is a Compatible Implementation?
As a specification is merely a document that outlines the behaviour of a given API, it needs an
implementation that realises the actual outcomes for each invocation of the API. For instance,
the Jakarta Persistence specification provides the EntityManager interface that has the persist()
method. This method, when called and passed an instance of a Jakarta Persistence entity, per-
sists that entity instance as a database row to the underlying database. The “library” that does the
actual work of taking that instance and making sure it gets stored to the durable storage when the
EntityManager#persist() method is invoked, is called a compatible implementation of the Jakarta
Persistence specification.

Each specification that makes up the full Jakarta EE plat-
form has an implementation. As a specification itself, the
Jakarta EE platform also has an implementation in the form
of compatible products and are free to pick any compati-
ble implementation of the platform. With this abstraction,
Jakarta EE implementation vendors can collaborate on the
base, standard specifications and compete through inno-
vations on top of the base platform.

An example of such invocation is the Payara Cloud offering
from Payara. This innovation helps you realise the dream
of true separation of your business domain application and
the runtime that powers it. With Payara Cloud, you simply
upload your Jakarta EE application web archive (.war file)
and have it automatically deployed to the cloud, just as
Jakarta EE was envisaged to have a separation of busi-
ness domain from the runtime. Another example of custom
features available on the Payara Platform is remote CDI
events. This feature, built on the Jakarta CDI specification,
allows the firing of CDI events that can be observed by any
listener in a given Hazelcast cluster.

The Complete Guide to Testing on the Jakarta EE Platform

https://www.payara.fish/resource/jakarta-ee-cdi-fact-sheet/
https://jakarta.ee/compatibility/
https://www.payara.fish/products/payara-cloud/
https://docs.payara.fish/community/docs/Technical%20Documentation/Public%20API/CDI%20Events.html
https://docs.payara.fish/community/docs/Technical%20Documentation/Public%20API/CDI%20Events.html

The Complete Guide to Testing on the Jakarta EE Platform

3

What is Eclipse MicroProfile?

The Jakarta EE Platform is a general purpose platform for developing all kinds of applications. As
modern application development paradigms have changed a lot in the past years, there is a need
to evolve the platform to meet such changes. One such paradigm is cloud native software applica-
tion development.

As the base Jakarta EE Platform has always been geared towards enterprises, it has historically
evolved at a much slower pace than changes in the software development space. It is for this reason
that the Eclipse MicroProfile project was created as an extension to the base platform to provide
cloud-native APIs for developing modern cloud-based applications.

Eclipse MicroProfile, built upon Jakarta CDI, Jakarta REST and Jakarta JSON Processing, comes
with the following APIs

• OpenTracing
• OpenAPI
• REST Client
• Config
• Fault Tolerance
• Metrics
• JWT Propagation
• Health

These APIs augment the much larger Jakarta EE Platform APIs to provide the developer with a cohe-
sive set of APIs for developing, testing and deploying cloud-native modern enterprise applications.

Jakarta EE Application Development Process

Jakarta EE application development follows the general software development lifecycle process
of requirements gathering and planning, design and/or prototyping, actual development, testing,
deployment and maintenance. Different companies use different combinations of these steps.
However, development, testing and deployment are steps that almost every company’s application
development process will entail.

All code examples are available on the Payara GitHub: https://github.com/payara/
Payara-Examples

https://microprofile.io/
https://github.com/payara/Payara-Examples
https://github.com/payara/Payara-Examples

The Complete Guide to Testing on the Jakarta EE Platform

4

Development

Developing applications on the Jakarta EE Platform with Eclipse MicroProfile requires that the appli-
cation declares a dependency on those two APIs. As Maven is the de facto build tool for most Jakarta
EE applications, a typical dependency declaration would look like that shown in Figure 1-1.

 FIgure 1-1 showing Jakarta EE and MicroProfile dependency declaration.

With the above declaration in place, a compatible implementation like the Payara Platform can be
used for development. Scoping the dependencies to ‘provided’ means the runtime, or compatible
implementation, will provide the implementation of the various ‘abstract’ APIs used.

Testing

Every non-trivial enterprise application will require testing. There are different types and combina-
tions of testing that can be employed to assure a certain level of quality for software applications.
The next section of this guide goes into detail about testing on the Jakarta EE Platform.

Deployment

After testing, an application will need to be deployed. As shown in Figure 1-1, a Jakarta EE application
normally does not ship with the runtime. The runtime is provided by the compatible implementa-
tion on which the application is deployed. There are different ways a Jakarta EE application can be
deployed, each varying in their complexity and ease of use. Payara Cloud is one such deployment
platform for Jakarta EE and Eclipse MicroProfile applications that takes an application archive and
automatically provisions all the infrastructure needed to run the application in the cloud.

https://www.payara.fish/products/payara-server/

The Complete Guide to Testing on the Jakarta EE Platform

5

Jakarta EE Testing

Testing is an integral, important part of software development. Testing assures that an application
meets a certain minimum level of quality. Jakarta EE applications, like applications developed with
other frameworks, require testing. As Jakarta EE is built on top of the Java Standard Edition, all the
testing libraries and frameworks available for Java SE can be employed to craft different types and
combinations of automated tests. Jakarta EE itself does not have any special testing API.

Principles of Testing
As important as software application testing is, there is no universal criteria for determining what
comprises good testing practices. The plethora of programming languages and application devel-
opment frameworks out there mean testing is a highly heterogeneous activity that differs from
one platform to the other and from one application to the other. The American Software Testing
Qualifications Board (ASTQB) has identified seven principles that can help guide the creation of an
effective testing regime. These principles are:

Testing Shows the Presence of Defects, not their Absence

Tests can help reveal bugs in an application. However, tests cannot guarantee that an application
is bug-free. All the tests in a test suite passing does not mean there are no defects that can be
unearthed. This notwithstanding, having extensive tests can give reasonable assurance that the
application will not fail under conditions that have been tested.

Exhaustive Testing is Impossible

Enterprise applications are very large and complicated. It is not possible to have tests that cover
every possible permutation of an application. Attempting any such activity will prove expensive. An
analysis of different core features should be made and test efforts focused on critical areas.

Early Testing Saves Time and Money

A quick smoke test of a new application release can help identify showstopper bugs that could have
required the running of the entire test suite to unearth. This also applies to implementing test driven
development as much as possible.

Defects Cluster

A small number of components in an application will be responsible for the majority of bugs. Testing
should then focus on these components that are responsible for the majority of the bugs. This is

https://astqb.org/istqb-foundation-level-seven-testing-principles/
https://astqb.org/istqb-foundation-level-seven-testing-principles/

The Complete Guide to Testing on the Jakarta EE Platform

6

essentially applying the Pareto Pinciple to testing application components – the idea that roughly
80% of consequences come from 20% of causes.

Beware of the Pesticide Principle

The same set of tests repeated over a long period of time may end up not catching new defects. This
principle is an analogy referring to the ineffectiveness of pesticide applied to the same area over
a long period in killing insects. Tests will need to be updated, refactored with new input data and
permutations to keep them effective at identifying application defects.

Testing is Contextual

Testing is a highly context dependent activity. The tests applied to a business application will differ
from the tests applied to an aerospace computer control application. This is important to keep in
mind when taking inspiration for creating testing systems.

Absence-of-errors is a Fallacy

As elucidated in the first principle, tests do not guarantee the absence of errors. As such, it is a mis-
taken notion to assume an application is free of defects if tests do not unearth any. Also identifying
and fixing defects does not guarantee the system cannot fail.

Types of Tests
There are many types of tests that can be employed in any given domain. Each company will employ
a different combination of these tests depending on the overall objectives of testing and the type of
application. The most popular types are listed below.

Unit Tests

A unit test is an automated test that tests a single application component in isolation to verify if the
component is working as expected. Unit tests are the most granular tests in any test suite. Depending
on the particular component being unit tested, its dependencies might be mocked in order to be
able to unit-test just that component in isolation. Unit tests are generally very fast to run because
of their isolated nature.

Integration Tests

An integration test is a test for asserting that different components of the application that together
carry out a specific function work correctly. Integration tests span more than one component.
Integration tests tend to be much more time consuming to run because they can span several com-
ponents and most likely include several network calls. Integration tests are also automated.

The Complete Guide to Testing on the Jakarta EE Platform

7

Functional Tests

A functional test focuses on the business aspect of an application. Functional tests will normally
verify the results of the operation under test. There is a fine line between functional and integra-
tion tests because both tests will cause different components of the application to be invoked. In
some organisations, functional and integration tests are one and the same. However, technically,
functional tests assert the output of an operation to verify that it equals a preset, expected value.
Integration tests, however, generally check if the components are working. Functional tests can be
manual or automated.

Performance Tests

A performance test checks how the application behaves when subjected to different workloads.
Performance tests can help unearth bottlenecks because they measure things like the speed of
the application, the reliability of a site, how scalable a component is among others. This kind of
test can help optimise applications based on the data gathered from the tests. Performance tests
are automated.

Smoke Tests

A smoke test is mostly a manual test that checks if the basic functionality of an application is work-
ing as expected. Smoke tests generally follow a new build or release of the application and precede
other types of checks.

Custom Test Combinations

There are other tests, like end-to-end and acceptance testing that are different variations of integra-
tion and functional tests. In the end, every organisation will have a mix of different test types and
modes based on the domain. The test types enumerated above are in no way an exhaustive list or all
the test types out there. But these are the most common that cut across all types of organisations.

The Complete Guide to Testing on the Jakarta EE Platform

8

Testing Libraries
As a Java based platform, there is a healthy collection of testing libraries that you can choose from to
craft tests for a typical Jakarta EE application. You will use different combinations of these libraries
to help test your application. This section takes a look at the most popular ones, and shows how you
can use them in a Jakarta EE application. We will also look at tradeoffs in picking a library.

JUnit

JUnit is a Java testing library for making assertions on test artefacts. It has a number of callbacks for
setting up and tearing down test data. It also has an extension API that other testing libraries have
built on top of to extend testing for different purposes. JUnit is arguably the most popular testing
library in enterprise Java.

To add JUnit to a Jakarta EE project, a dependency on the junit-jupiter will be declared in the project
object model file as shown in Figure 1-2

Figure 1-2 showing a JUnit dependency declaration in the pom.xml file

With this dependency in place, we can use the gamut of JUnit assertions and test constructs. However,
you will seldom use JUnit in isolation. It will serve as the base test library for setting up test data,
creating test classes and artefacts and then using its various assert* methods to make assertions.

The Complete Guide to Testing on the Jakarta EE Platform

9

Mockito

Mockito is a Java library for creating mocked objects in unit tests. A component under test that has
dependencies on other components will have those dependencies mocked. Mocking allows predict-
able values on the mocked objects to be returned and later asserted.

A typical Jakarta EE application will consist of runtime managed components. By runtime managed
components, we mean application controller classes that are managed by the Jakarta Contexts and
Dependency Injection runtime. As the “glue” that helps you develop loosely coupled applications, the
CDI runtime manages the creation, injection and destruction of various application dependencies.

As such, you cannot simply unit test different components in isolation without some form of mocking
of their dependencies. For such, the Mockito library is an excellent one. Using it entails adding it as
a dependency as showing in Figure 1-3.

Figure 1-3 shows Mockito dependency declaration

Figure 1-3 shows a dependency declaration on the mockito-core and mockito-junit-jupiter arte-
facts. Mockito has JUnit extensions that for creating unit tests we will need. Figure 1-4 shows the
component we seek to test.

The Complete Guide to Testing on the Jakarta EE Platform

10

Figure 1-4 showing GreetingService controller

GreetingService is an application-scoped (Line 1) singleton that has a single method - greet(String
name) that returns a jakarta.json.JsonObject. The controller declares a dependency (Line 5) on
ConfigPropertyProvider, shown in Figure 1-5 below.

Figure 1-5 showing ConfigPropertyProvider controller class.

The Complete Guide to Testing on the Jakarta EE Platform

11

The ConfigPropertyProvider is also an application-scoped singleton that centralises MicroProfile
Config properties. It has getter methods (Lines 6 and 11 from Lombok) for making these injected
configuration properties available to its clients.

To unit-test the GreetingService, we need to first mock calls to its dependent, the ConfigPropertyProvider.
This way, we can unit test it in isolation. Figure 1-6 shows the full JUnit/Mockito unit test class for
the GreetingService.

Figure 1-6 showing the GreetingServiceTest

The GreetingServiceTest is a JUnit test that is extended with Mockito (Line 2) through the @
ExtendWith annotation. The class under test (CUT) is injected on Line 6 as a Mockito managed
object through @InjectMocks (Line 5) annotation. Lines 8-9 show an injection of a mocked instance
of the ConfigPropertyProvider controller class. The mocked instance will be injected into the mockito
managed GreetingService object.

http://xunitpatterns.com/SUT.html

The Complete Guide to Testing on the Jakarta EE Platform

12

With these injections in place, we tell the Mockito runtime what to return if a given method is invoked
on the mock. Lines 13-17 use the JUnit @BeforeEach callback method to set up response data when
certain methods are invoked on the mocked ConfigPropertyProvider controller instance. In this case,
we return the values that would have been returned if the controller class was running in a managed
environment like the Payara Platform or Payara Cloud. In that case, the MicroProfile Config runtime
will inject config values into the various fields in the ConfigPropertyProvider (Figure 1-5). But in a
unit test environment, we need to mock such a function because everything is running in isolation,
independent of any runtime provided features.

Lines 19-33 finally show the actual test. Line 22 shows the invocation of the greet method on
the GreetingService Mockito managed instance. Lines 26-31 makes assertions on the returned
JsonObject, using predetermined values that we expect to be available in the returned JsonObject
if the GreetingService is working correctly.

The entire GreetingServiceTest class is a simple unit test. As shown in Figure 1-6, there is nothing
related to Jakarta EE in it. It is a simple, plain unit test that is testing a single component in isolation.
This kind of test is also very fast because of its very isolated, single-unit nature . This is an example
of how you can unit test Jakarta EE components using JUnit in combination with the Mockito library.
Core components of your application should be heavily unit tested because by their nature, unit tests
are cheap and thus lend themselves to faster build pipelines.

Arquillian

Arquillian is an integration testing library for creating application deployments in a test context.
Unlike the unit test discussed in the previous section, integration testing requires a deployed
instance of the application because, as the name implies, it tests how a given component behaves
within the context of its relationship with other components of the application. Figure 1-7 shows
the HelloResource class.

Figure 1-7 showing the HelloResource

http://arquillian.org/

The Complete Guide to Testing on the Jakarta EE Platform

13

The HelloResource is a Jakarta REST service that depends upon the GreetingService (Lines 4-5). It
has one resource method hosted at the path /hello-world/{visitor} where visitor is a path parameter
variable that is substituted at runtime with the value that is passed. The resource method delegates
the greeting to the GreetingService instance. Though this class is a very simple, boring one, there
are three different Jakarta APIs at play. The Jakarta CDI, Jakarta REST and MicroProfile Config APIs.
CDI providing the wiring of the dependencies , Jakarta REST providing the infrastructure to accept
HTTP requests, route to this class, marshal and return a response to the client, MicroProfile Config
providing the reading of the configuration values provided by the ConfigPropertyProvider.

To test if all these disparate parts that make up the HelloResource work correctly when the appli-
cation is deployed to a compatible runtime, we need to have such a deployment environment in the
test context. Effectively, testing that the JsonObject returned when the HelloResource method is
invoked, will, in actual fact, indirectly be asserting that all the dependencies of the class are behaving
correctly, at least as far as the returned data is correct.

Arquillian provides the constructs for creating application deployments in a test context such that
we can make different test assertions on different components of the application without needing
to mock. Essentially with Arquillian, we get a “live view” of the application in the test context and
can then test if the different parts are working well, both individually and as a cohesive whole.

To use Arquillain, we need to declare a dependency on it in the pom.xml file. The first part of this is
to declare the arquillian-bom in a dependency-management block, as shown in Figure 1-8.

Figure 1-8 showing the arquillian-bom declaration.

The Complete Guide to Testing on the Jakarta EE Platform

14

With the bill of materials declared, we can then declare the rest of the dependencies in the depend-
encies block as shown in Figure 1-9.

Figure 1-9 showing the other Arquillian dependencies.

Similar to Mockito, Arquillian has a JUnit extension that we pull in with the arquillian-junit5-container.
The arquillian-payara-server-embedded tells Arquillian which container we want to use to run the
test. As discussed above, running an integration test entails deploying the actual application artefact,
in our case a .war file, to a real application server, or compatible Jakarta EE runtime.

There are different ways an implementation can be used with Arquillian. The arquillian-payara-serv-
er-embedded is a connector from Payara that tells the library how to start, deploy and stop the
container. The payara-embedded-all dependency then pulls in the embedded server. The last bit of
setup to get everything in place is to configure the arquillian.xml file, shown in Figure 1-10 below.

https://blog.payara.fish/how-to-test-your-applications-in-payara-server

The Complete Guide to Testing on the Jakarta EE Platform

15

Figure 1-10 showing the arquillian.xml configuration file.

The arquillian.xml file is where the library is configured. The sample shown in Figure 1-10 sets the
payara-embedded as the default container to be used in the test. This file can be used to configure
different aspects of the library and containers that are available to it. For our purposes, the above
sample suffices. With everything in place, let’s take a look at the HelloResource integration test as
shown in Figure 1-11.

The Complete Guide to Testing on the Jakarta EE Platform

16

Figure 1-11 showing the HelloResourceIT class.

Figure 1-11 shows the full HelloResourceIT class, which starts by declaring ArquillianExtension
as a JUnit extension we want to use. Lines 5-6 use the inject the HelloResource, which is our class
under test, using the jakarta.inject.Inject. Lines 22-35 declare a method annotated @Deployment.
This annotation marks the createLocalDeployment method as a deployment producer. An Arquillian
deployment is an archive of everything that should be deployed as part of the application. The

The Complete Guide to Testing on the Jakarta EE Platform

17

method uses the library’s ShrinkWrap API to create a org.jboss.shrinkwrap.api.spec.WebArchive.
This archive contains all the classes, descriptors, properties files and everything else we need to
ship with our deployed application. Arquillian takes this returned WebArchive and then deploys it
to the configured container, in our case Payara embedded.

With the deployment method in place, Lines 37-52 create the actual test method and assertions. Line
39 calls the hello method on the injected HelloResource, passing in “John Jakes” as the parameter.
The rest of the method makes assertions on the returned JsonObject with predetermined values
that should be returned if the various controllers are working in unison.

Lines 48 and 49 are particularly interesting because for the unit test, we mocked the expected values
that should be returned when the ConfigPropertyProvider is invoked. But for this integration test,
the actual MicroProfile Config values are read by the runtime. The microprofile-config.properties
file from which the config values to be injected into the ConfigPropertyProvided are read is shown
in Figure 1-12.

Figure 1-12 showing the MP config properties file.

Figure 1-11 shows a full fledged Jakarta EE integration test using Arquillian, JUnit and the Payara
Platform. The integration test in the example makes the call directly on the instance of the
HelloResource injected into the test. However, we can also make REST calls to the HelloResource
in the test and then make test assertions on the returned response. Figure 1-13 shows a test that
uses the HTTP client introduced in Java 11 to make a REST call to the HelloResource.

The Complete Guide to Testing on the Jakarta EE Platform

18

Figure 1-13 showing another test method. Already discussed parts omitted for brevity.

Lines 78 of Figure 1-13 shows the use of @ArquillianResource annotation to inject a resource into
the field. Line 17 annotates the testHelloResource method with @RunAsClient. This annotation tells
Arquilian to run this method outside of the container. We do this to simulate a real REST client firing
against the HelloResource method. The rest of the method makes an HTTP call to the deployed
HelloResource, converts the response from String to JsonObject and makes assertions on it.

The Complete Guide to Testing on the Jakarta EE Platform

19

Arquillian is not limited to just this. We can also test persistence. Figure 1-14 shows a simple
HelloEntity, a Jakarta Persistence entity that will be mapped to a database table.

Figure 1-14 showing the HelloEntity.

The HelloEntity is persisted through the EntityManager injected into the PersistenceService shown
in Figure 1-15.

The Complete Guide to Testing on the Jakarta EE Platform

20

Figure 1-15 showing the PersistenceService.

The PersistenceService is a simple singleton EJB that persists and finds HelloEntity instances. With
this in place, we can have another test to test that this controller is working as expected. Figure
1-16 shows another test that directly calls the methods on the PersistenceService and makes test
assertions on the returned objects.

The Complete Guide to Testing on the Jakarta EE Platform

21

Figure 1-16 shows the PersistenceService test.

The Complete Guide to Testing on the Jakarta EE Platform

22

Lines 11-12 of Figure 1-16 injects the PersistenceService with the @Inject annotation. The test-
Persistence method, declared on Lines 16-54 then calls the save and find methods on the injected
controller and makes test assertions on the returned objects.

As you have seen so far, Arquillian gives you a way to test Jakarta EE managed components in your
tests with minimum setup. All that is needed is to create an archive of your application with all that
is needed and then leave the deployment to the library. You can also see how the JUnit library is a
constant all through.

Arquillian tests, however, can be expensive to run since Arquillian needs to spin up a container on
which to deploy your application archive. This cost can be reduced through the use of remote con-
tainers. This is when you tell the library to bind to an already running container. For instance a CI/CD
pipeline can have a running Payara Server to which Arquillian based integration tests can be pointed
to for test artefact deployment.

Whichever container option that is chosen is not as important as having adequate integration tests
that touch all core aspects of an application. Even though testing does not guarantee the absence
of defects, integration tests generally assure that critical application components that fail can be
found out much faster for remedial action.

Testcontainers

Testcontainers is another Java library that allows you to run test infrastructure in “lightweight,
throwaway instances of common databases, Selenium web browsers, or anything else that can
run in a Docker container.” Effectively TestContainers allows you to deploy your application and
its dependent services within a test as Docker containers, fully managed by the library. To use it,
declare a dependency on it as shown in Figure 1-17.

Figure 1-17 showing TestContainers dependency declaration.

https://www.testcontainers.org/

The Complete Guide to Testing on the Jakarta EE Platform

23

With the dependency declaration in place, we are ready to use the library. TestContainers has dif-
ferent ways of spawning Docker containers. You can spawn containers programmatically using the
API, through an existing Dockerfile or through a docker-compose file. I find the docker-compose
feature the most powerful of them all. This allows you to run the same set of containers that will be
run in production in the test context without needing to glue together anything. Listing 1-18 shows
the use of the TestContainers API to create the infrastructure for testing the HelloResource.

Figure 1-18 showing the setup for TestContainers.

Figure 1-18 starts by annotating the test class with @TestContainers. This annotation is a JUnit
extension that activates automatic start and stop of containers used in the test. Lines 11-17 create
a org.testcontainers.containers.DockerComposeContainer annotated @Container, passing in the
docker-compose.yml file bundled with the application. Lines 28-30 then use methods on the created
DockerComposeContainer to get the host and port of the service within the docker-compose.yml
file that we are interested in. The returned host and port information is then used to create a URL
to the deployed resource method in the container. With the setup in place, we use the Java HTTP
client to make a call to the resource and then make assertions on the returned data. This is shown
in Figure 1-19.

The Complete Guide to Testing on the Jakarta EE Platform

24

Figure 1-19 showing test assertions. Previously discussed code left out for brevity.

The testHello method shown in Figure 1-19 uses the Java HTTP client to invoke the hello-world
resource method in the HelloResource class. The rest of the method uses the same assertions we
have seen throughout this guide to assert that the returned data is correct. Note that the assertions
on Lines 25 and 26 assert for the real data as returned by the ConfigPropertyProvider controller. This
is because this test is firing against an actual deployment of the application in a Docker container.

Testcontainers has different ways of spawning different services. I encourage you to check out the
docs page for in-depth guides on how to use the library for your testing needs. Arquillian also does
have an extension similar to Testcontainers for spawning containers. Take a look at Arquillian Cube
for more information on how to use this extension.

https://www.testcontainers.org/features/creating_container/
http://arquillian.org/arquillian-cube/

The Complete Guide to Testing on the Jakarta EE Platform

25

Other Test Libraries

The libraries covered in this guide are by no means an exhaustive list of all the options available
to you for testing Jakarta EE applications. However, these are the most popular ones that are very
pervasive in the ecosystem. JUnit for instance has influenced almost every other testing library on
the Java platform. An important take away from the discussions in this guide is that testing a Jakarta
EE application is no different from testing any Java based application. Some test types naturally
require some initial plumbing, but so will any non-trivial test.

You might be wondering if I have any recommendations as to which library to use. My answer is
that it mostly depends. Is the application a greenfield one? Is it a legacy for which you are adding
tests? What is the mix of existing and proposed tests? Are there test reports and coverage? Every
application domain is different and highly contextual. As such the best way to create a good, reliable
and maintainable testing regime is to carry out an analysis of the application within the context of
business objectives.

The Complete Guide to Testing on the Jakarta EE Platform

26

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

Payara Services Ltd 2022 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Summary

In this guide, we have taken a look at the theoretical foundations of the Jakarta EE application
development platform, how it relates to the Eclipse MicroProfile project, then looked at principles
of testing as listed by the ISTQB. We’ve then investigated the types of tests and finally the most
popular, far reaching Java libraries for creating unit and integration tests.

Since you are reading this guide, you most likely are a Jakarta EE developer. Do you know there is a
new, easier, convenient, faster and relatively cheaper way to deploy and host your Jakarta EE appli-
cations in the cloud? This new Jakarta EE focused PAAS handles all the DevOps related tasks and
infrastructure for you - it completely abstracts you from Docker, Kubernetes and other such complex
infrastructure. All you need to do is simply upload your application artefact or .war file and watch it
deploy and run instantly in the cloud - almost like magic.

Check out the new Payara Cloud and speak to us today on how we can help you leverage the power
of this platform to cut down on your application development costs today.

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://payara.cloud

	What is Jakarta EE?
	What is a Specification?
	What is a Compatible Implementation?

	What is Eclipse MicroProfile?
	Jakarta EE Application Development Process
	Development
	Testing
	Deployment

	Jakarta EE Testing
	Principles of Testing
	Testing Shows the Presence of Defects, not their Absence
	Exhaustive Testing is Impossible
	Early Testing Saves Time and Money
	Defects Cluster
	Beware of the Pesticide Principle
	Testing is Contextual
	Absence-of-errors is a Fallacy

	Types of Tests
	Unit Tests
	Integration Tests
	Functional Tests
	Performance Tests
	Smoke Tests
	Custom Test Combinations

	Testing Libraries
	JUnit
	Mockito
	Arquillian
	Testcontainers
	Other Test Libraries

	Summary

