
The Complete Guide To JSON
Processing On The Jakarta EE
Platform

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. User Guide

The Complete Guide To JSON Processing On The Jakarta EE Platform

Contents

What is Jakarta EE?	 1

What is a Specification? 	 2

What is a Compatible Implementation?	 2

What is Eclipse MicroProfile?	 3

Jakarta EE Application Development Process 3

Development 4

Jakarta JSON Binding 	 5

Configuration 7

Date and Number Formatting 8

Output Formatting 8

Null Values 8

Property Order 8

Strict Internet JSON (I-JSON)	 8

Property Naming Strategy 9

Ignoring Fields 10

Mapping 10

Mapping Individual Objects 11

Mapping Collections 11

Mapping Java Records 13

Custom Adapters 15

Use Cases 17

Test Resources 17

Simpler Data Transfer 17

Better REST Customization 17

Summary	 18

The Complete Guide To JSON Processing On The Jakarta EE Platform

1

The Java Platform has been the platform of choice for enterprise application development for a lot
of developers over the last two and half decades. There is no shortage of frameworks and platforms
for developing all kinds of software applications using the Java Programming Language. One such
platform that has stood the test of time is Jakarta EE.

This guide shows you how to handle the JavaScript Object Notation (JSON) on the Jakarta EE Platform.
You will learn about Jakarta JSON-B - how to customise it, how to map objects and collections, how
to map Java records and when to create custom adapters and serializers. By the end of this guide, you
will have a good grasp of how to handle JSON in your Jakarta EE applications with Jakarta JSON-B.

What is Jakarta EE?

Jakarta EE is a set of community developed, abstract specifications that together form a platform for
developing end-to-end, multi-tier enterprise applications. Jakarta EE is built on the Java Standard
Edition, and aims to provide a stable, reliable and vendor neutral platform on which to develop cloud
native applications.

Hitherto, Jakarta EE was called Java EE and was a property of Oracle Inc., evolved through the Java
Community Process (JCP). However, in late 2017, Oracle decided to move the platform to an open
foundation for a much broader community-led evolution. The Eclipse Foundation got chosen and
Java EE, after the transfer, got rebranded to Jakarta EE.

https://www.json.org/json-en.html
https://jakarta.ee/

2

What is a Specification?
As stated in the above definition, Jakarta EE is made up of a set of specifications that each cover a
specific API for solving a specific software development need. For example, the Jakarta Contexts
and Dependency Injection specification provides constructs for creating loosely coupled applications
through dependency injection. These different specifications are combined into a single “umbrella”
specification for each Jakarta EE release. As such, Jakarta EE 10 for instance, is released under the
Jakarta EE 10 specification.

More technically, a specification is a formal proposal document made to the Jakarta EE Specification
Committee through the Jakarta EE Specification Process (JESP) that outlines the functions of a given
set of APIs. This document outlines what the expected behaviour should be for various invocations
of the API. The specification then acts as the blueprint for the API.

What is a Compatible Implementation?
As a specification is merely a document that outlines the behaviour of a given API, it needs an
implementation that realises the actual outcomes for each invocation of the API. For instance, the
Jakarta Persistence specification provides the EntityManager interface that has the persist()
method. This method, when called and passed an instance of a Jakarta Persistence entity, per-
sists that entity instance as a database row to the underlying database. The “library” that does the
actual work of taking that instance and making sure it gets stored to the durable storage when the
EntityManager#persist() method is invoked, is called a compatible implementation of the
Jakarta Persistence specification.

Each specification that makes up the full Jakarta EE platform has an implementation. As a specifica-
tion itself, the Jakarta EE platform also has an implementation in the form of compatible products. As
the specifications are separated from their implementations, you as a developer will generally code
against the API constructs of the specification, and are free to pick any compatible implementation
of the platform. With this abstraction, Jakarta EE implementation vendors can collaborate on the
base, standard specifications and compete through innovations on top of the base platform.

An example of such invocation is the Payara Cloud offering from Payara. This innovation helps you
realise the dream of true separation of your business domain application and the runtime that pow-
ers it. With Payara Cloud, you simply upload your Jakarta EE application web archive (.war file) and
have it automatically deployed to the cloud, just as Jakarta EE was envisaged to have separation
of business domain from the runtime. Another example of custom features available on the Payara
Platform is remote CDI events. This feature, built on the Jakarta CDI specification, allows the firing
of CDI events that can be observed by any listener in a given Hazelcast cluster.

Options for Serverless in Java

https://jakarta.ee/specifications/
https://www.payara.fish/resource/jakarta-ee-cdi-fact-sheet/
https://www.payara.fish/resource/jakarta-ee-cdi-fact-sheet/
https://www.payara.fish/resource/jakarta-ee-10-what-you-need-to-know/
https://www.payara.fish/products/payara-cloud/
https://docs.payara.fish/community/docs/Technical Documentation/Public API/CDI Events.html

The Complete Guide To JSON Processing On The Jakarta EE Platform

3

What is Eclipse MicroProfile?

The Jakarta EE Platform is a general purpose platform for developing all kinds of applications. As
modern application development paradigms have changed a lot over the past years, there is a need
to evolve the platform to meet such changes. One such paradigm is cloud-native software applica-
tion development.

As the base Jakarta EE Platform has always been geared towards enterprises, it has historically
evolved at a much slower pace than changes in the software development space. It is for this reason
that the Eclipse MicroProfile project was created as an extension to the base platform to provide
cloud native APIs for developing modern cloud-based applications.

Eclipse MicroProfile, built upon Jakarta CDI, Jakarta REST and Jakarta JSON Processing, comes
with the following APIs

•	 OpenTracing
•	 OpenAPI
•	 REST Client
•	 Config
•	 Fault Tolerance
•	 Metrics
•	 JWT Propagation
•	 Health

These APIs augment the much larger Jakarta EE Platform APIs to provide the developer with a cohe-
sive set of APIs for developing, testing and deploying cloud native modern enterprise applications.

Jakarta EE Application Development Process

Jakarta EE application development follows the general software development lifecycle process
of requirements gathering and planning, design and/or prototyping, actual development, testing,
deployment and maintenance. Different companies use different combinations of these steps.
However, development, testing and deployment are steps that almost every company’s application
development process will entail.

https://microprofile.io/

The Complete Guide To JSON Processing On The Jakarta EE Platform

4

Development

Developing applications on the Jakarta EE Platform with Eclipse MicroProfile requires that the appli-
cation declares a dependency on those two APIs. As Maven is the de facto build tool for most Jakarta
EE applications, a typical dependency declaration would look like that shown in Listing 1-1.

Listing 1-1

<dependency>

			 <groupId>jakarta.platform</groupId>

			 <artifactId>jakarta.jakartaee-api</artifactId>

			 <version>10.0.0</version>

			 <scope>provided</scope>

		 </dependency>

		 <dependency>

			 <groupId>org.eclipse.microprofile</groupId>

			 <artifactId>microprofile</artifactId>

			 <version>5.0</version>

			 <type>pom</type>

			 <scope>provided</scope>

		 </dependency>

Listing 1-1 showing Jakarta EE and MicroProfile dependency declaration.

With the above declaration in place, a compatible implementation like the Payara Platform can be
used for development. Scoping the dependencies to ‘provided’ means the runtime, or compati-
ble implementation will provide the implementation of the various ‘abstract’ APIs used. There is
nothing special about using Jakarta EE for application development. Everything will be dependent
upon application domain requirements. The Jakarta EE dependency makes all the specifications
that make up the Jakarta EE 10 release available to your application, including Jakarta JSON-B, the
subject of this guide.

To use JSON-B outside of a Jakarta runtime like Payara Server, you can add the following depend-
encies to your pom.xml file to have a JSON-B implementation available for instance in your tests.

The Complete Guide To JSON Processing On The Jakarta EE Platform

5

<dependency>

	 <groupId>org.glassfish.jersey.media</groupId>

	 <artifactId>jersey-media-json-binding</artifactId>

	 <version>3.1.0</version>

	 <scope>test</scope>

</dependency>

<dependency>

	 <groupId>org.glassfish.jersey.media</groupId>

	 <artifactId>jersey-media-json-processing</artifactId>

	 <version>3.1.0</version>

	 <scope>test</scope>

</dependency>

With these two dependencies in place, you can use the JSON-B API outside of a Jakarta EE runtime
and have an implementation available. The examples in this gude run the code as JUnnit test cases.
You can find the full sample code here.

Jakarta JSON Binding

Jakarta JSON Binding is a high level API for serialising and deserializing Java objects to and from
JSON. It is very much POJO based and easy to use. Listing 1-2 shows the reference Java class that
will be used for this discussion. HelloEntity is a simple Plain Old Java Object (POJO).

Listing 1-2

@Getter

@Setter

public class HelloEntity implements Serializable {

	 private Long id;

	 private Long version;

	 private String name;

	 private String greeting;

	 private LocalDateTime greetingDate;

	 private LocalDateTime dateCreated;

}

The Complete Guide To JSON Processing On The Jakarta EE Platform

6

Listing 1.3 shows how to use the Jakarta JSON Bind API to transform an instance of HelloEntity into
a valid, RFC 7159 JSON format.

Listing 1-3

Jsonb jsonb = JsonbBuilder.create();

	 var jsonString = jsonb.toJson(helloEntity);

	 log.log(Level.INFO, () -> jsonString);

The above code snippet shows the use of the Jakarta JSON API to convert an instance of the
HelloEntity to a JSON string. The jakarta.json.bind.JsonbBuilder interface has a
number of methods for creating instances of jakarta.json.bind.Jsonb. The one used in the above
snippet is the default that returns a Jsonb with default configurations. The above invocation gen-
erates the JSON string shown in Listing 1-4, representing the HelloEntity instance passed to the
Jsonb#toJson method.

Listing 1-4

{

 "dateCreated": "2022-12-08T15:38:48.086089036",

 "greeting": "Hello, world!",

 "greetingDate": "2022-12-08T15:38:48.086077212",

 "id": 1,

 "name": "Arquillian",

 "version": 1

}

The HelloEntity instance that resulted in the above JSON string is shown in Listing 1-5

Listing 1-5

 var helloEntity = new HelloEntity();

 helloEntity.setGreeting("Hello, world!");

 helloEntity.setName("Arquillian");

 helloEntity.setGreetingDate(LocalDateTime.now(ZoneOffset.UTC));

 helloEntity.setDateCreated(LocalDateTime.now(ZoneOffset.UTC));

 helloEntity.setId(1L);

 helloEntity.setVersion(1L);

https://www.rfc-editor.org/rfc/rfc7159

The Complete Guide To JSON Processing On The Jakarta EE Platform

7

Configuration
The snippet shown in Listing 1.3 uses a default configuration to configure the behaviour of the Jsonb
object. The JsonbBuilder#create method has an overloaded method version that allows for
passing a jakarta.json.bind.JsonbConfig configuration object that customises the behaviour
of the Jsonb object. Listing 1-6 shows the snippet shown in Listing 1-3 rewritten to pass configu-
ration to the Jsonb.

Listing 1-6

JsonbConfig config = new JsonbConfig()

 .withDateFormat("yyyy-MM-dd HH:mm:ss", Locale.UK)

 .withFormatting(true)

 .withNullValues(true)

 .withPropertyOrderStrategy(PropertyOrderStrategy.

LEXICOGRAPHICAL)

 .withStrictIJSON(true)

.withPropertyNamingStrategy(PropertyNamingStrategy.LOWER_CASE_WITH_

UNDERSCORES);

 Jsonb jsonb = JsonbBuilder.create(config);

 var jsonString = jsonb.toJson(helloEntity);

 log.log(Level.INFO, () -> jsonString);

Listing 1-6 shows passing custom configurations to the Jsonb object to customise the generated
JSON. Using the same HelloEntity instance as shown in Listing 1-5, the customised Jsonb object
created in Listing 1-6 generates the JSON shown in Listing 1-7.

Listing 1-7

{

 "date_created": "2022-12-10 10:35:48",

 "entity_date": null,

 "greeting": "Hello, world!",

 "greeting_date": "2022-12-10 10:35:48",

 "hello_prize": null,

 "id": 1,

 "name": "Arquillian",

 "version": 1

}

The Complete Guide To JSON Processing On The Jakarta EE Platform

8

Date and Number Formatting

Jsonb by default uses ISO formats to serialise date and numbers as shown by the dateCreated and
greetingDate fields in the JSON shown in Listing 1-4. Date fields can be formatted with custom formats
that can be parsed by java.time.format.DateTimeFormatter. These formats can be passed
in two ways, one being globally as part of the configurations passed to Jsonb as done in Listing 1-6.
This results in the formatted date-created and greeting-date fields of the generated JSON shown in
Listing 1-7. Date formats can also be set per field in the Java class using the @JsonbDateFormat
annotation, passing in a valid date format such as @JsonbDateFormat("dd.MM.yyyy").

Numbers can be formatted using the jakarta.json.bind.annotation.JsonbNumberFormat annotation
such as @JsonbNumberFormat("#0,000.00"). The passed number format should be one that
can be parsed by the java.text.DecimalFormat. Both the date and number format annotations can be
used on field, getter/setter, type, parameter and package. When used on a class, all date or number
fields will use the given format. When used only on a getter, the formatted field will be deserialized
but not serialised. When used on only a setter, the formatted field will only be serialised and not
deserialized.

Output Formatting

The JsonbConfig passed to the Jsonb in Listing 1-6 sets the formatting option to true with the
withFormatting(true) option. This causes Jsonb to format the outputted JSON string.

Null Values

Null value options can be set in two ways. Using the jakarta.json.bind.annotation.
JsonbNillable annotation on a field, setter/getter methods, class or package. Annotating any
of these with @JsonNillable will have that field serialized to JSON even if it has null values. The
second way to configure null values globally is by passing true to the withNullValues method when
creating the JsonbConfig object as done in Listing 1-6.

Property Order

The order of serialised properties can be set either using the jakarta.json.bind.annotation.
JsonbPropertyOrder or by passing in any of the constants in jakarta.json.bind.config.
PropertyOrderStrategy to the withPropertyOrderStrategy method as done in Listing 1-6.
There are three possible sort orders namely LEXICOGRAPHICAL, REVERSE and ANY. Lexicographical
will sort the fields of the serialised class to its lexicographic order, reverse will reverse the fields
lexicographically and any will sort the fields in an undefined order.

Strict Internet JSON (I-JSON)

You can enable full support for “Internet JSON” or I-JSON by passing true to the withStrictIJSON
method. This causes the generated JSON to be much stricter and more interoperable.

https://datatracker.ietf.org/doc/html/draft-ietf-json-i-json-06

The Complete Guide To JSON Processing On The Jakarta EE Platform

9

Property Naming Strategy

We can set the property naming strategy by passing one of the constants from
PropertyNamingStrategy class to the withPropertyNamingStrategy method, which will
be applied globally. The possible naming strategies available are:

IDENTITY

LOWER_CASE_WITH_DASHES (my-mixed-case-property)

LOWER_CASE_WITH_UNDERSCORES (my_mixed_case_property)

UPPER_CAMEL_CASE (MyMixedCaseProperty)

UPPER_CAMEL_CASE_WITH_SPACES (My Mixed Case Property)

CASE_INSENSITIVE (mYmIxEdCaSePrOpErTy)

The default is IDENTITY, which generates and reads field names in the lowerCamelCase format.

Putting all the options discussed so far together, for the given HelloEntity instance shown in
Listing 1-8 below, we can generate the JSON shown in Listing 1-9.

Listing 1-8

 var helloEntity = new HelloEntity();

 helloEntity.setGreeting("Hello, world!");

 helloEntity.setName("Arquillian");

 helloEntity.setGreetingDate(LocalDateTime.now(ZoneOffset.UTC));

 helloEntity.setDateCreated(LocalDateTime.now(ZoneOffset.UTC));

 helloEntity.setEntityDate(LocalDate.now(ZoneOffset.UTC));

 helloEntity.setHelloPrize(new BigDecimal("23500"));

 helloEntity.setVersion(1L);

Listing 1-9 shows the generated JSON from the HelloEntity instance above.

Listing 1-9

{

 "date_created": "2022-12-10 10:56:53",

 "entity_date": "10.12.2022",

 "greeting": "Hello, world!",

 "greeting_date": "2022-12-10 10:56:53",

 "hello_prize": "23,500.00",

 "id": null,

 "name": "Arquillian",

 "version": 1

}

The Complete Guide To JSON Processing On The Jakarta EE Platform

10

Ignoring Fields

Fields can be excluded from being serialised or deserialised through the @JsonbTransient anno-
tation. When used on a field, that field will not be serialised or deserialised to and from JSON. When
used only on the getter method of a field, that field will be serialised to JSON but not deserialised,
and when used only on the setter method of a field, that field will only be serialised.

Mapping
JSON-B, as you have seen so far, can generate JSON from POJO instances with the Jsonb#toJson
method. It can also generate POJO instances from JSON through any of the Jsonb#fromJson meth-
ods. For example, Listing 1-10 reads back the JSON generated in Listing 1-9, saved in a file called
helloEntity on the classpath.

Listing 1-10 reading back the generated JSON.

Listing 1-10

 try (var inputStream = HelloResourceJaxRsSeTest.class.getResourceAsStream("/

data/helloEntity.json")) {

 var helloEntityFromJson = jsonb.fromJson(inputStream, 			

			 HelloEntity.class);

 assertEquals(helloEntityFromJson.getId(), helloEntity.getId());

 assertEquals(helloEntityFromJson.getGreeting(), helloEntity.		

			 getGreeting());

 assertEquals(helloEntityFromJson.getName(), helloEntity.		

			 getName());

 assertEquals(helloEntityFromJson.getEntityDate(), helloEntity.	

			 getEntityDate());

 assertEquals(helloEntityFromJson.getHelloPrize(), helloEntity.	

			 getHelloPrize());

 }

The JSON file is read into an input stream that is passed as the source of the JSON to Jsonb#fromJson
method, with the class HelloEntity as the second argument. This generates a new instance of
HelloEntity, on which we perform some simple assertions to see if it matches the original instance
from which the JSON was created.

The Complete Guide To JSON Processing On The Jakarta EE Platform

11

Mapping Individual Objects

Our use of Jsonb so far has been to map to and from individual Java objects. The Jsonb#toJson
method can take any valid java.lang.Object that can be converted to JSON. In our examples so
far, we only converted single instances of HelloEntity with it. But Jsonb can also convert to and
from collections.

Mapping Collections

Jsonb can also map to and from generic collections. To convert a list of HelloEntity instances to
JSON, Listing 1-11 creates them and simply passes the collection to the toJson method on the
Jsonb instance.

Listing 1-11 converting POJO collection to JSON

Listing 1-11

 var helloEntity = createEntity("Arquillian", "Hello, World!", new

BigDecimal("23500"));

 var anotherEntity = createEntity("Payara", "Hello Java!", new

BigDecimal("14500"));

 var helloEntityList = new ArrayList<HelloEntity>();

 helloEntityList.add(helloEntity);

 helloEntityList.add(anotherEntity);

 var helloEntityListJson = jsonb.toJson(helloEntityList);

The generated JSON list is shown inListing 1-12

Listing 1-12

[

 {

 "date_created": "2022-12-10 11:54:18",

 "entity_date": "10.12.2022",

 "greeting": "Hello, World!",

 "greeting_date": "2022-12-10 11:54:18",

 "hello_prize": "23,500.00",

 "name": "Arquillian",

 "version": 1

 },

 {

The Complete Guide To JSON Processing On The Jakarta EE Platform

12

 "date_created": "2022-12-10 11:54:18",

 "entity_date": "10.12.2022",

 "greeting": "Hello Java!",

 "greeting_date": "2022-12-10 11:54:18",

 "hello_prize": "14,500.00",

 "name": "Payara",

 "version": 1

 }

]

The generated JSON can equally be read back to a generic collection, much like was done with read-
ing back to a single instance in Listing 1-10. Listing 1-13 shows reading back the JSON list shown
in Listing 1-12 into a generic java.util.List collection.

Listing 1-13 showing mapping from JSON list to a generic collection.

Listing 1-13

 try (var inputStream = HelloResourceJaxRsSeTest.class.getResourceAsStream("/

data/helloEntityList.json")) {

 List<HelloEntity> helloListFromJson = jsonb.

fromJson(inputStream, new TypeLiteral<List<HelloEntity>>() {

 }.getType());

 assertEquals(helloListFromJson.size(), helloEntityList.size());

 }

Notice for the second parameter to the Jsonb#fromJson method, the generic List<HelloEntity> is
wrapped in a jakarta.enterprise.util.TypeLiteral. This is a CDI construct that supports
inline instantiation of objects that represent parameterized types with actual type parameters. The
helloListFromJson variable is now instantiated to a list of HelloEntities as read from the JSON file.

The Complete Guide To JSON Processing On The Jakarta EE Platform

13

Mapping Java Records

Java 14 introduced records - a unified way to create immutable data objects without all the cere-
monial code. JSON-B currently has support for records (with some caveats). Listing 1-14 shows a
HelloRecord class.

Listing 1-14

public record HelloRecord(String name,

 String greeting,

 @JsonbProperty("greeting_date")

 LocalDateTime greetingDate,

 @JsonbProperty("date_created")

 LocalDateTime dateCreated,

 @JsonbProperty("hello_price")

 BigDecimal helloPrice,

 @JsonbDateFormat("dd.MM.yyyy")

 @JsonbProperty("entity_date")

 LocalDate entityDate) {

 @JsonbCreator

 public HelloRecord {

 }

}

This record is the same as the HelloEntity class. However, as part of the constructor
initialization, we pass in some JSON-B annotations to customise how the fields should be serialised
and deserialized. This is needed to work consistently across implementations as we set the
propertyNamingStrategy to PropertyNamingStrategy.LOWER_CASE_WITH_UNDERSCORES.
Without the @JsonbProperty annotation passing in the fields names, eg (“greeting_date”), JSON-B
can serialise to JSON but not deserialize from it because it will be expecting the camelCase field
names in the JSON string. We also need to pass in a custom implementation of the jakarta.json.
bind.config.PropertyVisibilityStrategy to Jsonb through the JsonbConfig as was done in Listing
1-6. The CustomPropertyVisibilityStrategy is shown in Listing 1-15.

https://blog.bmarwell.de/2022/12/09/jsonbconstructor_bug_naming_strategy.html

The Complete Guide To JSON Processing On The Jakarta EE Platform

14

Listing 1-15 showing our custom PropertyVisibilityStrategy implementation

Listing 1-15

public class CustomPropertyVisibilityStrategy implements

PropertyVisibilityStrategy {

 @Override

 public boolean isVisible(Field field) {

 return true;

 }

 @Override

 public boolean isVisible(Method method) {

 return false;

 }

}

This is needed because JSON-B, by default, looks for the JavaBean getter/setter method styles
of getXXX and setXXX. But records don’t have that. So we implement the visibility strategy to
cater for that. Listing 1-14 also shows the compact HelloRecord constructor annotated with @
JsonbCreator. This annotation identifies the custom constructor or factory method to use when
creating an instance of the associated class. With everything in place, HelloRecord can be con-
verted to and from JSON as shown in Listing 1-16.

Listing 1-16 shows converting HelloRecord to and from JSON

Listing 1-16

var helloRecord = new HelloRecord("Arquillian", "Hello, World!", LocalDateTime.

now(ZoneOffset.UTC),

 LocalDateTime.now(ZoneOffset.UTC), new BigDecimal("25000"),

LocalDate.now(ZoneOffset.UTC));

 var recordJson = jsonb.toJson(helloRecord);

 HelloRecord helloRecord1 = jsonb.fromJson(recordJson, HelloRecord.

class);

 assertEquals(helloRecord.name(), helloRecord1.name());

 assertEquals(helloRecord.greeting(), helloRecord1.greeting());

 assertEquals(helloRecord.helloPrice(), helloRecord1.helloPrice());

 assertEquals(helloRecord.entityDate(), helloRecord1.entityDate());

The Complete Guide To JSON Processing On The Jakarta EE Platform

15

Listing 1-16 shows creating a HelloRecord object, converting it to a JSON string, then converting
that JSON string back to another HelloRecord instance. The code then makes some assertions to
confirm both objects have the same values.

Custom Adapters
JSON-B adapters allow you to customise the mapping process. Though you can customise how an
object is mapped to and from JSON with the constructs discussed so far, there are times when you
don’t have control over the class, or need some fine grained control over the process. For instance
you might want to marshal and unmarshal only specific fields of a class in some contexts. For such
cases, you can register an implementation of jakarta.json.bind.adapter.JsonbAdapter
when configuring Jsonb. Listing 1-17 shows a custom JsonbAdapter that converts only specific
fields of the HelloEntity to and from JSON.

Listing 1-17 showing custom JsonbAdapter implementation

Listing 1-17

public class CustomAdapter implements JsonbAdapter<HelloEntity, JsonObject> {

 @Override

 public JsonObject adaptToJson(final HelloEntity obj) throws Exception {

 return Json.createObjectBuilder()

 .add("name", obj.getName())

 .add("greeting", obj.getGreeting())

 .add("id", obj.getId())

 .add("greeting_date", obj.getGreetingDate().toString())

 .build();

 }

 @Override

 public HelloEntity adaptFromJson(final JsonObject obj) throws Exception {

 var helloEntity = new HelloEntity();

 helloEntity.setName(obj.getString("name"));

 helloEntity.setGreeting(obj.getString("greeting"));

 helloEntity.setId(Long.valueOf(obj.get("id").toString()));

 helloEntity.setGreetingDate(LocalDateTime.parse(obj.

getString("greeting_date")));

 return helloEntity;

 }

}

The Complete Guide To JSON Processing On The Jakarta EE Platform

16

The custom implementation takes a subset of the HellEntity fields and converts to a jakarta.
json.JsonObject in the adaptToJson method of the interface. The inverse is done in the
adaptFromJson method to convert from JsonObject to a HelloEntity instance. The
CustomAdapter can now be passed to Jsonb through JsonbConfig and used for converting to
and from JSON as shown in Listing 1-18.

Listing 1-18 shows passing CustomAdapter to Jsonb through JsonbConfig

Listing 1-18

 JsonbConfig jsonbConfig = new JsonbConfig()

 .withNullValues(true)

 .withFormatting(true)

 .withAdapters(new CustomAdapter());

 try (Jsonb jsonb = JsonbBuilder.create(jsonbConfig)) {

 var json = jsonb.toJson(helloEntity);

 log.log(Level.INFO, () -> json);

 var convertedEntity = jsonb.fromJson(json, HelloEntity.class);

 assertEquals(helloEntity.getName(), convertedEntity.getName());

 assertEquals(helloEntity.getGreeting(), convertedEntity.

getGreeting());

 assertEquals(helloEntity.getGreetingDate(), convertedEntity.

getGreetingDate());

 }

Listing 1-18 shows the passing of our CustomAdapter to Jsonb through JsonbConfig. We then
create a JSON string from a HelloEntity instance which we then convert back. We then make some
assertions on the generated objects to be sure they’re the same. Listing 1-19 shows the generated
JSON from the call in Listing 1-18.

Listing 1-19 showing the generated JSON

Listing 1-19

 {

 "name": "Arquillian",

 "greeting": "Hello, World!",

 "id": 1,

 "greeting_date": "2022-12-10T22:21:24.773712320"

}

The Complete Guide To JSON Processing On The Jakarta EE Platform

17

Use Cases
So far we have discussed the use of Jakarta JSON-B to convert Java objects to and from JSON.
You might be wondering what use cases suit the use of this API. First it’s the default marshaller for
Jakarta REST. JSON-B is the underlying API for converting to and from RESTful resources created
using Jakarta REST. Other use cases include:

Test Resources

You can use JSON-B to read test data from JSON files to create repeatable data for test cases. As
part of creating reliable, consistent and repeatable tests, it is good practice to have consistent test
data for each scenario. One way that can be achieved is through the provision of test data as JSON
data that is read to instantiate test artefacts at runtime. These JSON files can be read using JSON-B.

Simpler Data Transfer

Objects can be converted to JSON strings, passed around an application much more conveniently
and converted back to the Java type at the final point of use. Some very complex objects can also
be converted to JSON and stored in a database, as most databases support JSON columns.

Better REST Customization

Knowing JSON-B will help you customise your REST resource return objects to better suit your
consuming clients. As the default API for converting to and from JSON in Jakarta REST, you can
easily extend and customise the marshalling and unmarshalling process much more easily with an
understanding of how the API works.

The Complete Guide To JSON Processing On The Jakarta EE Platform

18

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2022 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Summary

In this guide, we looked at the theoretical foundations of Jakarta EE, what it is, what a specification
is and how Jakarta EE relates to Eclipse MicroProfile. We then looked at how to get started with
Jakarta EE and MicroProfile in a Maven application. We then took a look at Jakarta JSON-B, how to
customise the serialisation and deserialisation process, mapping single and collection objects and
records and finally briefly looked at some use cases for JSON-B.

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://payara.cloud

	What is Jakarta EE?
	What is a Specification?
	What is a Compatible Implementation?

	What is Eclipse MicroProfile?
	Jakarta EE Application Development Process
	Development

	Jakarta JSON Binding
	Configuration
	Date and Number Formatting
	Output Formatting
	Null Values
	Property Order
	Strict Internet JSON (I-JSON)
	Property Naming Strategy
	Ignoring Fields

	Mapping
	Mapping Individual Objects
	Mapping Collections
	Mapping Java Records

	Custom Adapters
	Use Cases
	Test Resources
	Simpler Data Transfer
	Better REST Customization

	Summary

