
Payara Server 
Deployment: A Guide to 
Integrating with Nginx 
And Traefik 

The Payara® Platform - Production-Ready,  
Cloud Native and Aggressively Compatible. User Guide



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

Guide Updated: November 2023Contents

Reverse Proxy With Jakarta EE 1

Uses Of A Reverse Proxy 2

Load Balancing 2

Web Acceleration 2

Security and Anonymity 2

SSL Termination 2

Content Filtering 2

Why Use A Reverse Proxy?	 3

Enhanced Security 3

Performance Gains 3

Scalability and Flexibility 3

Redundancy and Reliability 3

Control and Logging 3

Simplified Encryption Management 3

Types Of Reverse Proxy Servers 4

Nginx 4

Apache HTTP Server 4

HAProxy 4

Traefik 4

Squid 4

Caddy 4

Nginx As Reverse Proxy 5

Configuring Nginx 5

Configuring Nginx In Docker 7

Traefik Reverse Proxy 9

Traefik Components 9

Routers 9

Services 9

Middlewares 9

Load Balancer 9

Providers 10

Certificates 10

Traefik Configuration 10

Summary	 13



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

1

In the realm of web architecture, reverse proxies play a critical role in improving security, manageability, 
and performance of deployment applications and services. Serving as an intermediary for requests from 
clients seeking resources from servers, reverse proxies can provide additional layers of security defence, 
handle load balancing, manage SSL provisioning and termination, and cache static content, thereby 
enhancing the overall efficiency and reliability of web applications served by specialised servers like Payara.   

In this guide, we take a look at using Payara Server behind two popular reverse proxy servers - Nginx 
and Traefik. We start off with a brief discussion of what a reverse proxy is, and then move to see 
the various configuration options for using the two reverse proxy servers with a very typical Payara 
Server running both standalone and in docker.

 
Reverse Proxy
 
A reverse proxy is a type of server that retrieves resources on behalf of a client from one or more 
servers. These resources are then returned to the client as if they originated from the proxy server 
itself. Using a reverse proxy, the client does not know, or need to know the existence of the proxied 
server. To the client, the reverse proxy is the source of its requests. It is called "reverse" because it 
is the opposite of a forward proxy, which protects clients by hiding their identities. Reverse proxies 
are a later evolution in web architecture, coming after the widespread use of forward proxies.

Reverse proxies play an important role in ensuring clients do not have direct, unfettered access 
to critical servers. Reverse proxies act as filters to requests from clients. Allowing through valid 
requests and blocking invalid requests based on custom configurations. Reverse proxies can also 
help reduce server load by caching resources and returning those to clients directly, instead of 
retrieving from the proxied servers. 

 

Reverse Proxy With Jakarta EE
Reverse proxies can be used with a wide variety of servers. In the Jakarta EE ecosystem, reverse 
proxies are used to proxy application runtimes, such that the client makes a request to a http path 
such as https://my-wicked-cool-company.com/amazing-app. The amazing-app being a Jakarta EE 
app running on Payara Server would be proxied by a proxy server such that the client request, 
whether made from the browser or some REST client, goes to the proxy server, which then redi-
rects the request to a Payara Server running instance, exposed internally through port 8080. The 
response is then returned to the client. In this example, the client is oblivious of the existence of 
Payara Server. The proxy acts as a messenger that takes the requests, gets a response and returns 
the same to the client. 

https://www.ibm.com/docs/en/i/7.5?topic=concepts-proxy-server-types#rzaieproxytypes__forward__title__1


Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

2

Uses Of A Reverse Proxy
A reverse proxy can be used for a number of reasons. Depending on the business domain, the same 
reverse proxy can be configured to do different things depending on which server it's proxying for. 
Some of the uses of reverse proxies in typical application deployment scenarios include the following. 

Load Balancing

It distributes incoming network traffic across multiple servers, ensuring no single server becomes 
overwhelmed. This can optimise resource use, maximise throughput, minimise response time, and 
avoid overload on any single resource. As an example, a reverse proxy can be configured to distribute 
incoming traffic to different Payara Server nodes in a given cluster.

Web Acceleration

Reverse proxies can compress inbound and outbound data, as well as cache commonly requested 
content, which can drastically decrease server load and improve the speed of content delivery to 
the client.

Security and Anonymity

Serving as the public face of your backend Payara servers, a reverse proxy protects against direct 
attacks. By hiding the characteristics and details of your servers, it helps to anonymize internal net-
works and safeguard sensitive data. This helps reduce the surface of possible attack as the actual 
server doing the heavy lifting is not directly exposed to the public facing internet. 

SSL Termination

A proxy server can decrypt incoming requests and encrypt server responses so that the web servers 
do not have to perform these potentially resource-intensive tasks. This is known as SSL offloading.

Content Filtering

Reverse proxies can restrict content based on incoming requests, which can be used for security, 
compliance, or to enforce company policies. For example, a reverse proxy can be configured to block 
requests from certain IP addresses.

https://www.okta.com/identity-101/ssl-offloading/


Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

3

Why Use A Reverse Proxy?
As discussed above, reverse proxies do play a critical role in production deployments of enterprise 
applications. Some of the core benefits of employing a reverse proxy for your Payara Server deploy-
ment include the following. 

Enhanced Security

Can act as a shield for servers through the use of Web Application Firewalls to filter out malicious 
traffic, thus mitigating threats like SQL injections, cross-site scripting (XSS), and Distributed Denial-
of-Service (DDoS) attacks.

Performance Gains

Caching, compressing, and SSL termination all reduce the load on the origin servers, enabling them 
to operate more efficiently. These are all tasks your Payara Server would not have to do, leaving it 
with enough resources to serve your application.

Scalability and Flexibility

They make it easier to scale out an application as traffic grows. Also, it can provide a way to load 
balance traffic between multiple servers or data centres. You can have your reverse proxy route 
traffic to different instances of your Payara Server nodes based on different criteria.

Redundancy and Reliability

If a server goes down, the reverse proxy can reroute traffic to other servers, ensuring that the appli-
cation remains available.

Control and Logging

It can provide a central point of control and monitor all traffic for better insight and compliance reporting.

Simplified Encryption Management

By centralising encryption and decryption operations, a reverse proxy simplifies the management 
of SSL certificates.



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

4

Types Of Reverse Proxy Servers

There are several popular reverse proxy servers widely used in various environments, each with its 
own set of features and strengths. 

Nginx

Known for its high performance, stability, rich feature set, simple configuration, and low resource 
consumption. Nginx is often used for load balancing, SSL termination, and as a web server.

Apache HTTP Server

While primarily a web server, it can also be configured as a reverse proxy. It's known for its flexibility 
due to a vast number of modules that extend its functionality.

HAProxy

A reverse proxy that is particularly efficient in terms of CPU and memory usage, making it suitable 
for environments where resources are a concern. It specialises in high availability, load balancing, 
and proxying TCP and HTTP-based applications.

Traefik

A modern reverse proxy and load balancer designed to be easy to configure, especially in dynamic 
and container-centric environments. It integrates with popular orchestrators like Kubernetes, Docker, 
and others.

Squid

Originally a client-side cache proxy, Squid has evolved and now also operates as a reverse proxy. It 
is often used to cache static content, reducing the load on web servers.

Caddy

An open-source web server that includes automatic HTTPS among its features. It’s known for its 
simplicity and zero-config SSL, which simplifies the setup of encrypted sites.

Each of these reverse proxy servers can be configured to improve performance, manage SSL/TLS, 
provide additional security layers, and much more. The choice often depends on the specific needs 
of your environment, such as the requirement for high availability, specific protocols, or integration 



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

5

with other tools and systems. All of them can be used to reverse proxy Payara Server as well. The next 
sections discuss configuration options for using Nginx and Traefik as reverse proxies for Payara Server.

Nginx As Reverse Proxy

Using Nginx as a reverse proxy for Payara Server is a straightforward thing. The most important 
configuration file for Nginx is the nginx.conf file, located in /etc/nginx directory. This central config-
uration file is used to control the behaviour of the Nginx server. It can be structured into multiple 
contexts such as events, http, server, and location, each serving different configuration scopes from 
general to specific. The nginx.conf file can include other configuration files to organise settings for 
maintainability. Most of the time however, you would not need to make major changes to that file. 

Configuring Nginx
Your custom reverse proxy configurations will most often be saved to the /etc/nginx/conf.d/
default.conf file. This file is typically used to configure the default server block (virtual host) 
and is located within the conf.d directory, which is included in the main Nginx configura-
tion. It is read by the main nginx.conf file when the Nginx service starts or reloads its configu-
ration. The default.conf file is where you define server-specific directives, such as the listening 
port, server name, location blocks, and other settings pertinent to the server you want to proxy.   

The following is a typical example of the default.conf file, delegating calls to a local running instance 
of Payara Server on port 8080.

# Reverse Proxy Config

    server {

            listen 80; # Listen on port 80 for HTTP traffic

            server_name your-cool-domain-name.com; 

            # Redirect all HTTP traffic to HTTPS by sending a 301 Moved 

Permanently response

            return 301 https://$server_name$request_uri; 

        }

        server {

            listen 443 ssl;

            server_name your-cool-domain-name.com; 



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

6

            # Paths to SSL certificate and private key for HTTPS encryption

            ssl_certificate /path/to/your/fullchain.pem; 

            ssl_certificate_key /path/to/your/privatekey.pem; 

            # SSL optimizations and security settings

            ssl_session_cache shared:SSL:1m; 

            ssl_session_timeout  10m; 

            ssl_ciphers 'ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-AES128-GCM-

SHA256:...'; 

            ssl_prefer_server_ciphers on; 

            location / {

                proxy_pass http://localhost:8080; 

                proxy_set_header Host $host; 

                proxy_set_header X-Real-IP $remote_addr; 

                proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; 

                proxy_set_header X-Forwarded-Proto $scheme; 

                # Enable WebSocket support

                proxy_http_version 1.1; # Use HTTP/1.1 for proxying

                proxy_set_header Upgrade $http_upgrade; 

                proxy_set_header Connection "upgrade"; 

            }

        }

The above configuration describes two server blocks for Nginx:

The first server block is listening on port 80 (standard for HTTP) and is set up to redirect all HTTP 
requests to HTTPS. When a request is made to your-cool-domain-name.com using HTTP, it sends a 
301 redirect to the client's browser, instructing it to request the page again using HTTPS.

The second server block is listening on port 443, which is the standard port for HTTPS traffic. It is 
configured to handle secure requests with SSL for your-cool-domain-name.com. It specifies the 
paths to the SSL certificate and key for encrypting the communication. It also defines SSL settings 
for security and performance optimization. The location / block sets up a reverse proxy to pass all 
requests to your Payara server running on localhost port 8080. It includes headers to pass the original 
host, the real client IP, and the scheme used (HTTP or HTTPS) to the Payara server. Additionally, it 
configures support for WebSocket connections.

Most of the time this configuration should suffice and should work once copied to the /etc/nginx/
conf.d/ directory. 



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

7

Configuring Nginx In Docker
When running both the reverse proxy and Payara Server as docker containers, the above configuration 
will only need to be changed slightly. Given the following sample docker compose file;

version: '3.9'

services:

  payara-server:

    image: payara/server-full:6.2023.10-jdk17

    ports:

      - "8080:8080"

    # Define environment variables or volumes for Payara

  nginx:

    image: nginx:latest

    ports:

      - "80:80"

      - "443:443"

    volumes:

      - ./path/to/your/default.conf:/etc/nginx/conf.d/default.conf:ro

      - ./path/to/your/certs:/etc/nginx/certs:ro

    depends_on:

      - payara-server

The previously discussed default.conf file changes as follows;

# Reverse Proxy Config

    server {

            listen 80; # Listen on port 80 for HTTP traffic

            server_name your-cool-domain-name.com;

            # Redirect all HTTP traffic to HTTPS by sending a 301 Moved 

Permanently response

            return 301 https://$server_name$request_uri;

        }



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

8

        server {

            listen 443 ssl;

            server_name your-cool-domain-name.com;

            # Paths to SSL certificate and private key for HTTPS encryption

            ssl_certificate /path/to/your/fullchain.pem;

            ssl_certificate_key /path/to/your/privatekey.pem;

            # SSL optimizations and security settings

            ssl_session_cache shared:SSL:1m;

            ssl_session_timeout  10m;

            ssl_ciphers 'ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-AES128-GCM-

SHA256:...';

            ssl_prefer_server_ciphers on;

            location / {

                proxy_pass http://payara-server:8080;

                proxy_set_header Host $host;

                proxy_set_header X-Real-IP $remote_addr;

                proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

                proxy_set_header X-Forwarded-Proto $scheme;

                # Enable WebSocket support

                proxy_http_version 1.1; # Use HTTP/1.1 for proxying

                proxy_set_header Upgrade $http_upgrade;

                proxy_set_header Connection "upgrade";

            }

        }

The main change is the proxy_pass value. This time around we are proxying to the Payara Server 
service named payara-server in the docker-compose file. The default.conf file largely stays the 
same. The most important part of the docker compose file is mounting the default.conf file to the 
relevant folder in the Nginx container.  

This is an example of how you would use Nginx as a reverse proxy for your Payara Server app. Of course, 
there is a lot more you can do, so do check out the full Nginx documentation for all the various options.  

https://nginx.org/en/docs/beginners_guide.html


Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

9

Traefik Reverse Proxy

Traefik is a modern HTTP reverse proxy and load balancer that makes deploying microservices easy. 
Traefik integrates with your existing infrastructure components (Docker, Swarm mode, Kubernetes, 
Marathon, Consul, Etcd, Rancher, Amazon ECS) and configures itself automatically and dynamically. 
Pointing Traefik at your orchestrator should be the only configuration step you need.

It's designed to simplify the complexity of dynamic network infrastructure configurations and to 
handle a variety of network protocols. Traefik is particularly well-suited for environments that dynam-
ically change, like when services are frequently deployed or have their network locations updated. 

Traefik Components
 
Traefik is made up of various components that can be configured to create a reverse proxy. These 
components are as follows.

Routers

Routers are the entry points to Traefik; they define rules to evaluate each incoming request's headers 
or URL and decide which service it should be routed to.

Services

Services in Traefik refer to the backends that actually run the application. A service could be a web 
server or a set of load-balanced servers that Traefik forwards requests to after they've been received 
and routed. Your Payara Server serving your application is an example of a service in Traefik

Middlewares

These are the mechanisms that can alter the request or response during the routing process. They 
can handle tasks like authentication, request headers modification, rate-limiting, etc.

Load Balancer

Traefik can distribute the incoming requests across multiple instances of a service, based on various 
algorithms, to ensure optimal resource utilisation and fault tolerance.



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

10

Providers

Providers in Traefik are the source of backend configurations. Traefik can integrate with a variety of 
providers like Docker, Kubernetes, and many others to discover and manage services dynamically.

Certificates

For HTTPS traffic, Traefik can automatically issue and renew SSL/TLS certificates using Let's Encrypt 
or use provided SSL certificates for secure communication.

The “magic” of Traefik is that it uses labels defined on docker services to discover which services it 
should reverse proxy to. This full decoupling makes it a very powerful option for orchestrating very 
sophisticated deployments with Payara Server.

Traefik Configuration
Traefik can be configured in a number of ways. The following docker compose file shows a basic 
straightforward way to get up and running. This option combines container declaration and config-
uration into the same docker compose file. 

version: '3.9'

services:

  traefik:

    image: traefik:v3.0

    command:

      - "--providers.docker=true"

      - "--entrypoints.web.address=:80"

      - "--entrypoints.websecure.address=:443"

      - "--certificatesresolvers.myresolver.acme.tlschallenge=true"

      - "--certificatesresolvers.myresolver.acme.email=your-email@example.com"

      - "--certificatesresolvers.myresolver.acme.storage=/letsencrypt/acme.

json"

      - "--providers.docker.network=web"

      - "--providers.docker.exposedbydefault=false"

      - "--middlewares.redirect-to-https.redirectscheme.scheme=https"

      - "--entrypoints.web.http.middlewares=redirect-to-https@docker"

    ports:

      - "80:80"

      - "443:443"



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

11

    volumes:

      - "/var/run/docker.sock:/var/run/docker.sock:ro"

      - "./letsencrypt:/letsencrypt"

    networks:

      - web

networks:

  web:

    external: true

 

The Docker Compose file defines a single service, traefik, which is based on the traefik:v3.0 
image. It specifies a number of command-line options to configure Traefik:

•	 It enables Docker as the provider, allowing Traefik to automatically discover services run-
ning in Docker.

•	 It defines two entry points, web for HTTP traffic on port 80 and websecure for HTTPS traffic 
on port 443.

•	 It sets up Let's Encrypt for automatic SSL certificate generation and renewal, with ACME TLS 
challenge for validation.

•	 It specifies an email for ACME registration and a file to store the certificates.
•	 It restricts Traefik to only include containers in the web network that are explicitly labelled 

for Traefik.
•	 It adds a middleware directive to redirect all HTTP traffic to HTTPS.
•	 It maps the host's Docker socket and a local directory for storing certificates to the con-

tainer, enabling Traefik to interact with the Docker API and store certificates.
•	 It attaches the Traefik service to an external network named web, which must be created 

outside of this Docker Compose file.
•	 The configuration ensures that any HTTP traffic hitting Traefik on port 80 will be redirected 

to HTTPS on port 443, securing all communications with SSL encryption.

 



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

12

That docker compose file for the Payara Server to which the Traefik will act as a proxy for is 
shown below.

version: '3.9'

services:

  payara-server:

    image: payara/server-full:6.2023.10-jdk17

    networks:

      - web

    labels:

      - "traefik.enable=true"

      - "traefik.http.routers.payara-server.rule=Host(`my-amazing-domain.com`)"

      - "traefik.http.routers.payara-server.entrypoints=web"

      - "traefik.http.routers.payara-server-secure.rule=Host(`my-amazing-

domain.com`)"

      - "traefik.http.routers.payara-server-secure.entrypoints=websecure"

      - "traefik.http.routers.payara-server-secure.tls.certresolver=myresolver"

      - "traefik.http.middlewares.redirect-to-https.redirectscheme.

scheme=https"

      - "traefik.http.routers.payara-server.middlewares=redirect-to-https"

      - "traefik.http.services.payara-server.loadbalancer.server.port=8080"

    expose:

      - "8080"

networks:

  web:

    external: true

The above docker compose defines a service named payara-server that runs the Payara Server on 
Java Development Kit (JDK) 17. It connects the service to an external network named web, indi-
cating it should be used with a reverse proxy like Traefik. It’s important to note that as the network 
for both docker-compose definitions are set to external, it must exist before attempting to create 
containers from the files.



Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

13

Labels are attached to the service, configuring Traefik to route traffic:

•	 traefik.enable=true tells Traefik to discover this service.
•	 traefik.http.routers.payara-server.rule defines a rule for HTTP traffic to route requests for 

payara.mydomain.com to this service.
•	 Two routers are set up, one for HTTP (payara-server) and one for HTTPS (payara-server-se-

cure), with the HTTPS router using a TLS certificate resolver named myresolver.
•	 The HTTPS middleware redirect-to-https is applied to the HTTP router, redirecting all HTTP 

traffic to HTTPS.
•	 The exposed port 8080 is the internal port of the Payara Server where the application is 

running, and Traefik will load balance requests to this port. 

This configuration allows the Payara server to be accessed via my-amazing-domain.com with auto-
matic HTTPS using certificates from Let's Encrypt.

This is one option to have Traefik act as a reverse proxy server for Payara Server running in a docker 
container. There are other options such as splitting Traefik configuration into a separate traefik.yaml 
file that you mount to the created container. You can find all the configuration options in the Traefik 
documentation. You definitely should take a look to discover the infinite possibilities of using Traefik 
with Payara Server.

Summary

In this brief guide, we have taken a look at reverse proxying Payara Server. We looked at what a 
reverse proxy server is, the uses and benefits, then looked at some popular reverse proxy options 
and finally took a look at common configuration options for setting up Nginx and Traefik as reverse 
proxies for Payara Server. As noted in the respective sections, there are many different ways these 
servers can be set up. Do check out the linked documentations for all you can do with them. When 
you are ready, you can download a free trial of Payara Enterprise  to start setting up your production 
deployment with Payara Server!

  

https://doc.traefik.io/traefik/
https://doc.traefik.io/traefik/
https://www.payara.fish/page/payara-enterprise-downloads/


Payara Server Deployment: A Guide to Integrating with Nginx and Traefik

14

sales@payara.fish UK: +44 800 538 5490 
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2023 All Rights Reserved. Registered in England and Wales; Registration Number 09998946 
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

PAYARA SERVER
FREE TRIAL

PAYARA CLOUD
FREE TRIAL

Interested in Payara? Try Before You Buy 

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/page/free-trials/
https://www.payara.fish/page/payara-enterprise-downloads/
https://manage.payara.cloud/
https://www.payara.fish/page/free-trials/
https://www.payara.fish/page/payara-enterprise-downloads/
https://login.payara.cloud/u/login?state=hKFo2SBDejVGUUNHdkxXZmJQdk11V0tPY1BRLVg2Yl9XSTItUKFur3VuaXZlcnNhbC1sb2dpbqN0aWTZIHpNcWV2bHpCUGFPdWpJUWhsa1l4X2dfUmZwRFpqWG5Po2NpZNkgMlNPOWE4a1ljSXZzMGVQcWxuVHBZaDMzQmVvTzRWM1E
https://www.payara.fish/page/free-trials/

	Reverse Proxy With Jakarta EE
	Uses Of A Reverse Proxy
	Load Balancing
	Web Acceleration
	Security and Anonymity
	SSL Termination
	Content Filtering

	Why Use A Reverse Proxy?
	Enhanced Security
	Performance Gains
	Scalability and Flexibility
	Redundancy and Reliability
	Control and Logging
	Simplified Encryption Management


	Types Of Reverse Proxy Servers
	Nginx
	Apache HTTP Server
	HAProxy
	Traefik
	Squid
	Caddy


	Nginx As Reverse Proxy
	Configuring Nginx
	Configuring Nginx In Docker

	Traefik Reverse Proxy
	Traefik Components
	Routers
	Services
	Middlewares
	Load Balancer
	Providers
	Certificates

	Traefik Configuration

	Summary

