
Options for Serverless
in Java

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. eBook

Options for Serverless in Java

Guide Updated: August 2023Contents

Introduction 1

Key Definitions 	 1

Cloud Computing 	 1

Cloud Native 	 2

Microservices 	 2

Server 	 2

Serverless 4

Function as a Service (FAAS) 	 4

Azure Functions 	 4

Google Cloud Functions 	 4

Oracle Cloud Functions 4

Advantages of FAAS 5

Disadvantages of FAAS 5

Automated Cloud Provisioning Service 6

Amazon Elastic Beanstalk 	 6

Cloud Foundry 6

Heroku 6

Google App Engine 	 6

Advantages of Cloud Provisioning Services 7

Disadvantages of Cloud Provisioning Services 7

Managed Container Services 8

AWS Elastic Container Service (ECS)	 8

AWS Elastic Kubernetes Service (EKS)	 8

Google Cloud Run 	 9

Advantages of Managed Container Services 	 9

Disadvantages of Managed Container Services 9

Jakarta EE and Serverless 	 10

Payara Cloud 10

Advantages of Payara Cloud 11

Disadvantages of Payara Cloud 12

Summary 	 12

Options for Serverless in Java

1

Introduction

Serverless is a buzzword in software and the Java world. It is a cloud-native development model
for building and running applications without managing servers. The cloud computing approach is
growing in popularity in the Java space, and serverless is not far behind.

Related Java frameworks are working to meet this demand, like Spring Cloud and MicroProfile both
developed for Spring Boot and Jakarta EE, respectively. These frameworks are designed to optimize
Java development for microservices. Though a cloud approach is not necessarily reliant on a micro-
services framework, the two often go hand in hand.

The 2022 Jakarta EE Developer survey revealed that the majority of the community plan to run over
80% of their systems in the cloud in the next two years. This means that a large proportion of the
Java community are looking at migrating to the cloud and therefore may be evaluating serverless
options to help them do so.

In this guide, we plan to explore serverless and provide information on different serverless options
for Java, and the pros and cons of each approach.

Key Definitions

Serverless is an approach for cloud computing. You might want to use a serverless solution to save
money and developer time when moving to a cloud native approach.

Serverless solutions for public cloud providers are events on demand through an execution-driven
model. Therefore, there is no charge for unused serverless functions.

This in turn is likely to involve a microservices architecture, which will create specific demands
related to the server functions needed.

First of all, then, let’s straighten up the definitions that make up the serverless ecosystem.

Cloud Computing
The ‘cloud computing delivery model’ can be understood as infrastructure on demand; infrastructure
that you don’t manage, that can expand and contract, and that you can access, rapidly. This contrasts
with the alternatives, such as an on-premise data centers or virtual machines, where rescaling takes
longer and is more difficult to implement.

2

Options for Serverless in Java

Cloud Native
Cloud native refers to a way of running applications that ‘exploits the advantages of the cloud com-
puting delivery model’. Cloud-native is, then, an approach that exploits this elastic, software-defined
infrastructure style.

The Cloud Native Computing Foundation has a slightly differing definition, bringing in containers,
service meshes and microservices. However, containers are an implementation of cloud native, and
microservices are an application architecture model that does not have to use cloud.

Microservices
Microservices refers to a software architecture
style where applications are structured by
code in small, granular modules or services.
A monolith application is split into a suite of
small services. Services can then be deployed
and maintained independently from each other.

Microservices don’t have to run in a cloud
environment necessarily. Microservices
architecture can be built using on-premise data
centres. And an application developed for the
cloud can use a monolithic architecture!

However, a cloud environment is often easier for
microservices, because it’s easier to set up each new microservice/instance, and cloud environments
tend to have specific management options for running several instances e.g. a centralised dashboard
and automatic scaling.

It often makes sense for businesses to make the decision to move to a cloud-native environment
at the same time as moving to a microservices architecture.

Server
A server is a wide, catch-all term that could be used to refer to a web server, an application server
or an application runtime. You can find more detailed definitions of each in our guide, Beginners
Overview Guide to Java Runtimes.

A server is technically a piece of software technology that simply provides a service to another
computer program and its user. However, the way a server is understood in terms of web server,
application server or runtime is as a piece of technology that handles infrastructural tasks needed
to run an application.

https://www.infoworld.com/article/3281046/what-is-cloud-native-the-modern-way-to-develop-software.html
https://www.infoworld.com/article/3281046/what-is-cloud-native-the-modern-way-to-develop-software.html
https://www.payara.fish/resource/beginners-overview-guide-to-java-runtimes/
https://www.payara.fish/resource/beginners-overview-guide-to-java-runtimes/
https://www.payara.fish/resource/explaining-microservices-no-nonsense-guide-for-decision-makers/

Options for Serverless in Java

3

When creating an application, you have the code related to the business logic; how data is created,
stored and changed to model what the application actually does. Whatever your application does –
anything from facilitating payments to allowing users to play a game, providing a software interface
in a car to managing a smart home system – the business logic is responsible for make that happen.

You also need infrastructural code to manage all the other aspects of an application working; the
background tasks that applications need to complete and may be less clearly related to the User
Interface (UI) and what the application actually does. This includes integration with other systems,
database connections, network related tasks and more. These are the tasks that are commonly
dealt with by a server or runtime.

A web server handles HTTP requests. HyperText Transfer Protocol is a high-level protocol used on
the Internet to communicate between different machines. Application Servers can handle HTTP
requests but also a whole range of communication types, including Remote Method Invocation (RMI)
and other types of API’s and protocols like Java Message Service (JMS) and Simple Object Access
Protocol (SOAP) for instance.

An Application Runtime indicates that you have a program that runs your application. It allows
for further focus on the business logic only by handling tasks like logging, configuration, security
and metrics.

From a Jakarta EE point of view, an applica-
tion runtime or server also provides indus-
try standard APIs and allow your applica-
tions to use them. Jakarta EE supplies the
Java Persistence API, for example, which
allows you to manage the persistence into
a relational database by the use of under-
lying data source implementations within
the application server. The Jakarta EE API
also defines a standard for object/relational
mapping and uses the data source to con-
nect to the database.

A server can be used to refer to the software
handling the tasks that a web server, application server or runtime might do. When it comes to moving
to a cloud native approach, there are many more infrastructural tasks that must be managed. Add
to the usual tasks, the provisioning of the Kubernetes resources, setting up the routing, networking
aspects, providing the SSL certificate for your endpoints and more. This is where developers want to
avoid the stresses of coding a server themselves – and may opt for serverless or allowing a vendor
to take care of these tasks.

https://blog.payara.fish/jakarta-ee-java-ee-guide

Options for Serverless in Java

4

Serverless
Serverless is a term that is often misunderstood. It does not mean the lack of a server, but rather
using a vendor that takes care of server issues on the behalf of their customers.

The issues related to running your applications – and to a cloud native approach – can be tackled
by a vendor. Developers concentrate on developing the business-logic code and creating the appli-
cation itself.

The extent to which infrastructural tasks are dealt with depends on the provider and technology of
choice. We will now describe the different forms of serverless.

Function as a Service (FAAS)

FaaS is a type of cloud computing service that allows developers to build, run, and manage appli-
cation packages as functions, without having to worry about maintaining the infrastructure. This
approach requires your application to be composed of small components that respond to events.
These components are called functions.

Functions contain only your business logic and the FAAS uploads them to the cloud. You then pay
per function invocation. Here are some popular FAAS:

Amazon AWS Lambda

This is perhaps the most
popular FAAS approach for
Java users. It is provided by
Amazon as part of Amazon
Web Services. You can write
and upload code as a .zip file
or container image; an AWS
Lambda will run it for you
without having to worry about
servers or clustering. It does
so for multiple languages,
including Java. Unlike Azure,
Google and Oracle alterna-
tives, AWS Lambda is con-
sidered ‘edge-ready’ - able
to deploy closer to the data
source.

Azure Functions

Azure Functions is Microsoft’s
offering for moving to a
cloud computing model with
FAAS. Again, you pay only for
resources when your func-
tions are running.

Google Cloud Functions

This is the FAAS offering if you
are using Google Cloud. It is
scalable and pay-as-you-go.
You get credits to spend on
functions as part of your cloud
package.

Oracle Cloud Functions

You may be likely to choose
FAAS because they integrate
with the cloud environment
chosen and other cloud ser-
vices provided by Oracle,
Google, Amazon or Azure.
As the 2022 Stack Overflow
developer survey reveals that
Oracle Cloud Infrastructure is
the least popular of the four,
it follows that its FAAS is less
popular. As with the others,
you just write and deploy your
code. Oracle will automati-
cally provide and scale.

https://survey.stackoverflow.co/2022/?utm_campaign=so-blog&utm_content=dev-survey-22&utm_medium=social&utm_source=twitter&hss_channel=tw-2599580401#section-most-popular-technologies-other-tools

Options for Serverless in Java

5

Advantages of FAAS
•	 Cost-efficient

FAAS can work out incredibly cheap, as you don’t need to over provision storage or compute
resources for your application. You only must pay when the function is executed. This can
vastly reduce operational expenses.

•	 Resilience and failover are handled by the cloud
You may also save money in your teams, as these tasks, related to the system's ability to
recover from a fault, are handled by the cloud.

•	 No operating system administration knowledge required
Containers virtualize the operating system instead of hardware. With FAAS, you don’t need
to learn about administrating this virtual operating system.

•	 No hardware skills needed

Disadvantages of FAAS
•	 Very little control over the execution of your application

You leave all the control over the execution of your application to the platform. Therefore, you
lose some of the opportunity to introduce complex functionalities.

•	 Limited in what APIs and libraries you have access to
You also need to be aware that this approach limits you to writing your application in specific
languages and can only make use of certain APIs and frameworks. These are likely to be lim-
ited to those favored by your cloud provider of choice. They will try to lock you into a product
suite. Check all your preferred technologies work with your chosen FAAS.

•	 Event driven architecture needs different design patterns
FaaS architectures also tend to be event driven, which requires a very different architecture
to the Object-Oriented approaches that are common today.

•	 Difficult to test and debug applications
As all the infrastructure is managed by the cloud provider, it is harder to ‘go in’ to make changes.

•	 No direct support for Java EE / Jakarta EE
Most cloud platform providers are not built with Jakarta EE – the specifications designed to
help with Java enterprise applications specifically – in mind.

Building your application for FaaS often severely limits how you can use Jakarta EE and a
runtime. It's possible to run embedded microservices-oriented runtimes from a function but
it's not straightforward and it's beneficial only for very complex functions.

•	 You have to significantly adjust your Jakarta EE application for effective use with FAAS
The best usage of Jakarta EE applications with FAAS is to use FAAS functions only for specific
application components which benefit from FAAS mostly, while building other components
as Docker containers and running them on an automatic provisioning service. This means
rewrites and adjustments.

Options for Serverless in Java

6

•	 You will still have to undertake significant work to prepare your application
With AWS Lambda, you still have to build an enterprise environment, a VPC (Virtual Private
Cloud), a JAX-RS endpoint, and an API gateway, at the very least. You may be better suited
to a solution like Payara Cloud, that takes advantage of the way Jakarta EE builds a ready-
to-deploy application, separated from infrastructure.

Automated Cloud Provisioning Service

This is a cloud service that automatically provisions the necessary runtime. With these services,
you upload your application to the cloud, and the service provisions appropriate infrastructure in
a way that provides load balancing, scaling, and failover for you. This, in terms of automating best
practices, ensures that your application meets your non-functional requirements.

Amazon Elastic Beanstalk

Amazon Elastic Beanstalk (EB) aims to simplify deploying applications to the cloud as much as pos-
sible. For Java applications, it provides a general Java platform to run any Java application, and a
Tomcat platform to run applications based on plain servlets. Besides Java-specific platforms, it also
supports platforms that can run any application packaged as a Docker container.

It allows creating a simple Docker environment and running any Docker container that is either built
using a Dockerfile or downloaded from the central Docker Hub or from a private AWS repository
hosted in the AWS Elastic Container Registry (ECR).

Cloud Foundry

Cloud Foundry is open source
and based on Kubernetes.
Developed by VMware, it is now
owned by the Cloud Foundry
Foundation. You deploy using
the cf-push command and it
uses four key Kubernetes tech-
nologies – KubeCF, Eirini, Quarks
and BOSH – to get applications
running on a Kubernetes cluster.

Heroku

Heroku manages your apps
inside its ‘dynos’ - smart con-
tainers. It is owned by Salesforce
and uses AWS technology.

Google App Engine

Google App Engine allows you
to build and run your applica-
tions on Google’s servers and
offers automatic scalability. The
important thing about Google
App Engine is you do not have to
containerize your apps – though
support for this is included.

Options for Serverless in Java

7

Advantages of Cloud Provisioning Services
•	 You don’t need as detailed architectural skills

You don’t have to retrain your existing developers in the skills needed to provision the
runtime. The automated configuration provided by services like Amazon Elastic Beanstalk
means you might also reduce the chance of small mistakes when developers do it
by themselves.

•	 Provision of the infrastructure you need
You only have to pay for what you use, making it a cost-effective system. You match your server
needs to your service load, and auto-scaling functionality means that extra servers are only
brought up when needed.

•	 Don't need as many systems administration skills
As above, you don’t need to retrain in the administration skills needed to manage the appli-
cation when it is already on the cloud.

•	 Don't need detailed hardware skills
There is no hardware involved in this solution, so both the skills and the operational costs
involved in hardware maintenance and security are eliminated.

•	 Resilience and failover are automatically provided
As with FAAS, your application’s ability to cope with failures is also dealt with by the
solution.

Disadvantages of Cloud Provisioning Services
•	 Often limits framework choices or packaging format (Docker)

Cloud provisioning MIGHT limit you to working with a certain set of frameworks and containers.
However, most of these services support running applications packaged as Docker containers, which
allows using any frameworks and dependencies of your choice. Something like Heroku can be crit-
icized for being too constraining – it may not be usable with older integrated technologies that
companies may not be ready to move on from yet.

•	 Still some resources provisioned even if not needed
•	 No direct support for Java EE / Jakarta EE or Payara Platform

Even though you can use Jakarta EE runtimes through Docker, this still leaves the extra step of setting
up Docker images. A solution like Payara Cloud would further minimize your infrastructural tasks by
taking this out of your hands as well.

Options for Serverless in Java

8

Managed Container Services

With the rise of the Container deployment model, a model has emerged to support the users who
want to run their containers. It is very similar to the cloud provisioning services solution but in this
case, you need to provide your container image that needs to be executed, just as you provide the
application in the provisioning model. The provider is responsible for having an environment for you
ready where they can run your image successfully. This is sometimes called Container as a Service
(CAAS). Container engines, orchestration and the underlying computer resources are delivered to
users as a service from a cloud provider.

AWS Elastic Container Service (ECS)

ECS allows creating any custom infrastructure based on Docker containers and provides orches-
tration of the containers, scheduling them on underlying virtual machines, scaling them based on
defined rules, defining network topologies and everything you would need from a complex net-
work infrastructure.

AWS Elastic Kubernetes Service (EKS)

EKS provides similar functionality based on the widely used Kubernetes project and thus allows a
more standardized way of deploying and managing Docker-based infrastructure. EKS is recommended
for more complex and standardized clusters of Docker containers. If you don’t need features specific
to ECS, it’s a more convenient way to run clusters than ECS because it’s more widely used, covered
with a lot of documentation and guides and with more flexible configuration and services.

AWS Fargate

Fargate is a service that allows you to run Docker containers directly, without creating clusters or
managing EC2 instances to run the containers. It’s not very convenient to use it directly because most
applications would need to run on multiple Docker containers or would at least benefit from scaling
a single Docker image to multiple instances behind a load balancer. But this service is very powerful
when combined with other AWS services that provide an abstraction over Fargate. For example, ECS
cluster can use Fargate to run individual containers. Beanstalk Multi-container environment uses an
ECS cluster, which can again use Fargate.

You still need to create your Docker containers through ECS and EKS, therefore we have included it
under the managed container system rather than cloud provisioning services – which do have the
potential to run without Docker, if not for Jakarta EE.

Options for Serverless in Java

9

Google Cloud Run

Google Cloud Run abstracts away infrastructure management, but unlike Google App Engine, assumes
the use of containers. You don’t have to create a cluster or manage infrastructure, but your app will be
containerized. Google Cloud build packs are available and can automatically build container images
from source code. However, this will not be possible for Jakarta EE applications – for Jakarta EE,
you still have to create a Kubernetes cluster.

Advantages of Managed Container Services
•	 Straightforward for people who are already comfortable with Kubernetes

If you’ve already trained in Kubernetes, the process of adopting managed container services
will have lower barriers to entry – there also shouldn’t be a steep learning curve when moving
between different managed Kubernetes vendors.

•	 Can add more complexity than some FAAS or cloud provisioning services

For example, with AKS and ECS you can specify a particular network topology of Docker con-
tainers. You can create clusters of containers, with services, tasks and network configurations.

Disadvantages of Managed Container Services

•	 More complex and time consuming than FAAS or cloud provisioning services

ECS or EKS for example, are much more difficult to set up than Amazon Elastic Beanstalk and a
lot of functionality provided by Beanstalk out of the box needs to be enabled and customized.

•	 In most cases, you have to create Docker images

Your engineers will still need to be trained in Docker and Kubernetes, even though infrastruc-
tural tasks will be dealt with. This is where a solution like Payara Cloud is useful – this will not
only deploy the application on Kubernetes but complete all YAML configuration, actually build
container images and create a pod.

•	 No direct support for Java EE / Jakarta EE or Payara Platform

As mentioned above, even when Managed Container Services proclaim to be able to create
container images for you, this will not be possible whilst also taking advantage of Jakarta EE.
You can use them, but you will have to create your own images.

Options for Serverless in Java

10

Jakarta EE and Serverless

Jakarta EE works differently to some of
its competitors, such as Spring. Jakarta
EE is packaged into an Archive file and
this application is stand-alone. Your EAR
or WAR contains application code, third
party application dependencies and,
optionally, deployment descriptors.

Therefore, a key Jakarta EE concept
is a deployable application, isolated
from infrastructure. It makes sense to
extend this for a cloud native world –
also automating the processes involved
with moving to an external, cloud
native infrastructure.

This is why Jakarta EE, a set of industry-standard APIs, prides itself on being ready for cloud-native
Java. This includes the development of MicroProfile, a set of specifications that build on the Jakarta
EE specifications and are designed to optimize Enterprise Java for a microservices environment.

Jakarta EE vendors are able to innovate and create options that take advantage of the way Jakarta
EE builds a ready-to-deploy application, separate from infrastructure.

Payara Cloud

Payara Cloud is a serverless option, but this time the majority of infrastructural tasks are managed
for you. All you need to do is deploy your WAR file, as you would deploy to your Jakarta EE runtime
- only here, the tasks related to a cloud native approach are also dealt with.

Payara Cloud runs on Microsoft Azure, building a runtime on Azure Kubernetes Service. The software
takes the user’s WAR file, packages it into a Docker image with Payara Micro – our microservices

https://www.payara.fish/products/payara-cloud/#register
https://blog.payara.fish/what-is-microprofile

Options for Serverless in Java

11

runtime – and completes all YAML, builds container images, creates a pod, deploys it on Kubernetes,
updates the API server to manage ingress on Microsoft Azure and even creates an SSL certificate
for the application.

You can then integrate this with your external Kubernetes platform – Kubernetes itself, OpenShift, or
Rancher for example. Serverless has become more comprehensive, with more of the infrastructural
tasks handled.

Advantages of Payara Cloud
•	 No need for your development team to train in Kubernetes, Docker and other cloud

native skills
Payara Cloud builds on the ‘write once, deploy anywhere’ philosophy of Jakarta EE. Payara
Cloud scans your application for database usage and configuration parameters defined
using the MicroProfile Config specification, and then presents you with a configuration
screen to enter these values. That’s all you need to do to connect to your database and
deploy the application – shielding your developers from infrastructural tasks and meaning
you don’t have to spend time and money on learning Kubernetes and Docker.

•	 Direct support for Jakarta EE
Unlike other serverless solutions, Payara Cloud uses Jakarta EE specifications. This means
you don’t have to worry about support for your Jakarta EE applications or to container-
ize your Jakarta EE applications in order to use the serverless technology – it is literally
designed for you! This makes it more simple to use than other serverless options, if you
know Jakarta EE; Java EE / Jakarta EE expert Adam Bien said “If you know a little bit about
Java EE, Payara is a lot simpler than AWS Lambda.”

•	 Integrate with your CI/CD workflows
Payara Cloud provides a friendly user
interface which allows your application
to run in a managed cloud environment.
While this is very convenient for
configuration and troubleshooting work,
integration in continuous deployment
pipelines calls for something else.
Payara Cloud is ready for this, with the
option to deploy your application using
a GitHub Action Workflow and Payara
Cloud Command Line (PCL).

•	 Faster and easier to use than other
serverless options
Because Payara Cloud truly takes away almost all infrastructural tasks, it makes moving to
the cloud as simple as pressing a button! Again, Adam Bien said, if you know Jakarta EE,
“I would say, creating Lambda from scratch and shipping it would take you at least half an

https://open.spotify.com/episode/2upnGnXB0pgmOhjW1lSp9j
https://open.spotify.com/episode/2upnGnXB0pgmOhjW1lSp9j
https://blog.payara.fish/deploying-to-payara-cloud-from-a-github-action-workflow

Options for Serverless in Java

12

hour, if not two hours. But to ship a
Payara Cloud application, I would say
5 minutes. Because you only need
a WAR.”

•	 Don't need detailed hardware skills
There is no hardware involved in this
solution, so both the skills and the
operational costs involved in hard-
ware maintenance and security are
eliminated.

•	 Strong monitoring and diagnostics
You can view metrics of all applica-
tions within the namespace in one
place, get detailed metrics of an
individual application and diagnostic
information will be provided for failed
application deployments.

Disadvantages of Payara Cloud
•	 Your application has to follow the Jakarta Web Profile specification

If you are not already using the Jakarta Web Profile specification, you will have to rewrite
it. However, Jakarta EE is a widely adopted set of specifications extending Java SE - the
standard edition Java programming language - with ways to perform the functions particu-
larly useful for an enterprise application. With the recent release of Jakarta EE 10 under
the Eclipse Foundation, the project is alive and creating new innovations by the second – it
might be time to consider a move!

•	 New technology – features still to come!
For example, clustering capabilities are currently in development for a future release of
Payara Cloud. Similarly, Payara Cloud is currently a cloud-only product by design with a pos-
sible on-premise version to be developed in the future, and rolling upgrades are currently in
development to eliminate downtime of your application during upgrade.

Summary

We hope that this guide has been helpful for both helping to understand what serverless is, and the
many options that are available to you as a Java EE / Jakarta EE developer.

We hope to have shown that serverless isn’t a single static concept with different competitors offer-
ing the same solution, under different brands. Instead, serverless is a catch-all term that can cover
many different technologies, and there are pros and cons to how much you decide to offload your

https://www.payara.fish/resource/jakarta-ee-10-what-you-need-to-know/
https://www.payara.fish/products/payara-cloud/#register

Options for Serverless in Java

13

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2023 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

infrastructural tasks. Often, you have to sacrifice elements of control in order for tasks to be taken
out of your hands.

For ultimate simplicity and Jakarta EE support, Payara Cloud is an exciting new option that is
being championed by Java EE/Jakarta EE experts. Find out more here.

Further reading:

•	 Payara Cloud Documentation
•	 Ignore Infrastructure and Concentrate on Code with Jakarta EE and Payara Cloud
•	 Payara Cloud Datasheet
•	 Explaining Microservices: No Nonsense Guide for Decision Makers

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/products/payara-cloud/
https://docs.payara.fish/cloud/docs/Overview.html
https://blog.payara.fish/payara-cloud-and-jakarta-ee
https://info.payara.fish/hubfs/Payara Cloud Datasheet.pdf
https://www.payara.fish/resource/explaining-microservices-no-nonsense-guide-for-decision-makers/
http://payara.cloud
http://payara.cloud

	Introduction
	Key Definitions
	Cloud Computing
	Cloud Native
	Microservices
	Server
	Serverless

	Function as a Service (FAAS)
	Azure Functions
	Google Cloud Functions
	Oracle Cloud Functions

	Advantages of FAAS
	Disadvantages of FAAS

	Automated Cloud Provisioning Service
	Amazon Elastic Beanstalk
	Cloud Foundry
	Heroku
	Google App Engine

	Advantages of Cloud Provisioning Services
	Disadvantages of Cloud Provisioning Services

	Managed Container Services
	AWS Elastic Container Service (ECS)
	AWS Elastic Kubernetes Service (EKS)
	Google Cloud Run

	Advantages of Managed Container Services
	Disadvantages of Managed Container Services

	Jakarta EE and Serverless
	Payara Cloud
	Advantages of Payara Cloud
	Disadvantages of Payara Cloud

	Summary

