
Migrating from WildFly to
Payara Community

What to Consider For a Successful Migration from WildFly to
Payara® Platform Community

Power Up Your Jakarta EE User Guide

Migrating from WildFly to Payara Community

Guide Updated: December 2024Contents

Introduction 1

About Payara Services and Payara Platform Community 1

WildFly vs. Payara Platform Community 2

Releases 2

Technology Comparison 3

Administration 5

Operating Modes 6

Clustering and High Availability 9

Provisioning Support 10

Security 11

Clustering in Payara Server Community and WildFly 12

Overview of Clustering in Payara Server Community 13

High Availability Support 15

Migrating Configuration of Server Resources 16

Data sources 16

Security Realms 18

JavaMail Sessions 21

Migrating Keycloak 23

Cloud 24

IDE Support 24

Innovation 25

Why Payara Platform Community? 25

Cloud-Native and Aggressively Compatible 25

User-Friendly and Intuitive 26

Open-Source Software with a Future You Help Define 26

Stable, Production-Ready Option With Full Support 26

Migrating from WildFly to Payara Community

1

Introduction

Migrating applications from WildFly to Payara Platform Community can be a seamless and straight-
forward process, thanks to their shared compatibility with Jakarta EE (and Java EE) specifications.
There are certainly distinctions between the two application server technologies. For example, many
Java EE APIs are implemented by different components in WildFly and Payara Platform Community.
Moreover, the configuration of certain aspects, such as external resources, high-availability and
deployment, is not covered by any specification and is, in fact, very different in these servers.
Nonetheless, the transition from WildFly to Payara Platform Community is not only possible but
can also be exceptionally easy.

This guide aims to simplify the migration process, offering a clear comparison of WildFly’s and
Payara Platform Community’s features and components, identifying equivalent tools and helping
you bridge your existing WildFly expertise with Payara Platform Community’s concepts. In addition,
this document provides step-by-step guidance on how to configure frequently used resources and
features in Payara Server.

About Payara Services and Payara
Platform Community

 Payara Services Ltd is a leading provider of application server technologies developed to address
Jakarta EE application and user needs. Its technologies support monolith, microservices and hybrid
solutions on premise, in the cloud as well in hybrid environments.

Payara Platform Community, which includes Payara Server Community and Payara Micro Community,
is a streamlined and developer-focused, open-source and cloud-native application server technology
that is designed for anyone experimenting with new features and APIs. Thanks to frequent releases,
it regularly offers new features. As such, it is ideal for developers and software engineering students
who want to innovate rapidly, test new functionalities and experiment.

For mission-critical applications in production environments as well as contexts that require robust-
ness, security and regulatory compliance, Payara Services offers Payara Platform Enterprise, which
has more operation-focused capabilities within its Payara Server Enterprise and Payara Micro
Enterprise. The platform builds on the Community edition and adds capabilities suited for running
mission-critical applications in production environments.

Migrating from WildFly to Payara Community

2

WildFly vs. Payara Platform Community

Releases
WildFly Server development started in 1999 under the name of EJB-OSS. It was then renamed a few
times, to JBOSS, JBoss and later to JBoss AS (JBoss Application Server). It got its current name of
WildFly in 2014 to clearly distinguish this solution from JBoss EAP (Enterprise Application Server),
which is an application server based on WildFly and commercially supported by Red Hat.

Compared to JBoss EAP, WildFly aims to evolve faster and is suitable for rapid application develop-
ments that are expected to require shorter maintenance lifecycles. Conversely, JBoss EAP typically
adopt new features more slowly, mostly after they are proven within WildFly. Also, it is more suitable
for projects that require long maintenance lifecycles and long-term stability.

A new version of WildFly is released four times a year. Plus, there may be occasional patches, up to
around five releases a year altogether. In comparison, Payara Platform Community follow a regular
release cadence, with up to 12 releases per year.

Thanks to a such rapid release cycle, Payara Platform Community is fast to implement the latest
version of Jakarta EE and MicroProfile APIs, which are usually featured in the next release after the
APIs are released. The latest version of Payara Server 6 supports Jakarta EE 10 and MicroProfile
6.1. The following table showcases how quickly Payara Server adopted new versions of Jakarta EE
and MicroProfile:

API version API released Payara Server
Community Version

Payara Server
Community Released

MicroProfile 6.0 December 2022 6.2023.3 March 2023

Jakarta EE 10 September 2022 6.2022.1 January 2022

MicroProfile 4.1 April 2021 5.2021.6 June 2021

MicroProfile 3.2 November 2019 5.194 December 2019

Jakarta EE 8 September 2019 5.193.1 October 2019

MicroProfile 2.1 October 2018 5.191 March 2019

Migrating from WildFly to Payara Community

3

Payara Platform Community supports deployments of Jakarta EE (Java EE) applications in any envi-
ronment: on premise, in the cloud, or hybrid. When in need of high security and reliability for mis-
sion-critical applications in production environments, we recommend the use of fully supported
Payara Platform Enterprise. Through this option, you can benefit from automatic security alerts and
fixes along with regular releases, bug fixes and patches. These ensure the stability of your environ-
ment. These elements, combined with a 10-year software lifecycle, lead to peace of mind, as you
don't have to worry about upgrading a year or two after implementing the software. Even more,
anyone using the commercially supported edition, Payara Platform Enterprise, can benefit from
direct access to technical support from Payara Services engineers.

Technology Comparison
While Payara Platform Community and WildFly offer similar features, they are typically built on dif-
ferent technologies and concept. In addition, they often use distinct terminology. To support your
migration from WildFly to Payara Platform Community, we’ve outlined the comparable features and
concepts between the two.

The following table compares the main concepts of WildFly and how they relate to concepts you'll
find in Payara Platform Community:

Concept WildFly Payara Platform
Community Description

Operating Mode

Single Server Standalone
mode

Domain with a single
server

Environment with one server, no
clustering

Multiple Servers Managed
domain

Domain with multiple
instances

Environment with clustered server
instances

Clustering

Server Group Server Group Deployment Group A logical grouping of servers within
a managed domain

Data Replication/
Caching Infinispan Domain Data Grid

(Hazelcast)
Technology used to synchronize
data and improve performance

Migrating from WildFly to Payara Community

4

Concept WildFly Payara Platform
Community Description

Management

Central Admin
Server

Domain
Controller

Domain Admin
Server (DAS)

The server that manages all other
instances in the domain

Remote Server
Management

Host
Controller Node (no controller)

A service (WildFly) or concept
(Payara) for managing server
instances on different machines

Web Interface Web Console Admin Console Browser-based tool for administer-
ing the server

Command-Line
Interface (CLI) CLI Asadmin CLI Tool for executing administrative

commands

Programmatic
Interface

HTTP
Management
Interface

REST Management
Interface

HTTP-based API for managing the
server

Individual Server
Instance Server Standalone Instance A single server process managed

by the admin server

Configuration

Configuration
Variations

Alternative
Configuration
Files

Named
Configurations

Different configurations for differ-
ent server instances

Security

Authentication/
Authorization

Security
Domain,
Realm

Realm, Login Module
Components used to verify user
identities and control access to
resources

Both Payara Platform Community and WildFly support the same Jakarta EE APIs, however they do
it in different ways. While WildFly is mainly based on JBoss / Red Hat components, Payara Platform
Community is largely built on components that are owned by the open-source Eclipse Foundation,
which also owns and oversees the entire Jakarta EE specification. Nonetheless, some components
used in WildFly are also used by Payara Platform Community’s main application server technology,
Payara Server Community, as they rely on Java EE references.

Migrating from WildFly to Payara Community

5

Here's the list of the most often used Jakarta EE APIs and their respective technologies in WildFly
and Payara Platform Community:

Jakarta EE API Payara Platform
Community WildFly

Contexts and Dependency Injection (CDI) Weld Weld

Jakarta Server Faces (JSF) Mojarra Mojarra

Bean Validation Hibernate Validator Hibernate Validator

JavaScript Object Notation (JSON)
Binding Yasson Yasson

Jakarta Persistence (JPA) EclipseLink Hibernate

WebSocket Tyrus Undertow

RESTful Web Services (JAX-RS) Jersey RESTEasy

Servlet Grizzly Undertow

Batch IBM JBatch Jberet

Jakarta Messaging (JMS) Open MQ Artemis

Jakarta Security Soteria Elytron

XML Web Services (JAX-WS) Metro Apache CXF

In addition to Jakarta EE APIs, both WildFly and Payara Platform Community provide MicroProfile
APIs, but the implementation of MicroProfile APIs in Payara Server is different from WildFly. While
WildFly relies on components from the SmallRye project, Payara Platform Community provides its
own implementation for MicroProfile APIs.

Administration
Both WildFly and Payara Platform Community offer multiple management interfaces:

• Web Console
• Command-Line Interface (CLI)
• HTTP Management Interface

The Web Console in Payara Platform Community is called the Admin Console and is accessible at the
admin HTTP port, by default at http://localhost:4848. By default, it doesn't require any authentication
and is only accessible to local clients (not over the network). Remote access is allowed only when
SSL encryption is enabled, and a non-empty password is set for the admin user admin.

http://localhost:4848

Migrating from WildFly to Payara Community

6

The CLI for Payara Server Community is called asadmin. It's a script located in Payara Server instal-
lation in the bin directory (asadmin for Unix-based systems, asadmin.bat for Windows). This tool
can manage a running instance of Payara Server Community as well as support some commands
that can work without connecting to a Payara Server Community instance.

The asadmin CLI can also be used to manage starting, stopping and restarting of Payara Server
instances. For example, to start Payara Server Community with the default configuration as a back-
ground service, run the start-domain command:

(syntax: Bash script)

<Payara_Home>/bin/asadmin start-domain

The HTTP Management Interface in Payara Server Community is mostly referred to as REST
Management Interface. It's available from the same URL root as the Admin Console, at the /man-
agement/domain path. By default, the URL is http://localhost:4848/management/domain. Payara
Server Community contains an intuitive web client for the REST Management Interface, which is
accessible via the default URL. This client can be used to explore all available management resources
and commands directly from a browser. . Additionally, all management URLs support JSON and XML
output for programmatic access. You can specify the desired format either by adding the format
name to the path (e.g. http://localhost:4848/management/domain.json) or by specifying it using
the HTTP Accept request header.

Moreover, the asadmin recorder is a unique feature of the Payara Platform (Community and
Enterprise) that can support environment setup scripting. It records the actions performed within
the Web Console and convert them as asadmin commands in a text file. This file can then be used
to set up your server to the same state as you did manually through the Web Console.

Operating Modes
WildFly supports two operating modes:

• Standalone: Single server instance, operates independently, each standalone instance is
configured separately. It can be used by invoking standalone.sh

• Managed domain: Designed for running and managing a multi-server topology from a single
Domain Controller server. It can be used by invoking domain.sh

Conversely, Payara Server Community doesn't distinguish between these two modes. It always
runs in a Domain mode, with a single Domain Admin Server (DAS) that can act either a standalone
server, like WildFly in standalone mode, or as a central domain controller with additional managed
server instances.

http://localhost:4848/management/domain.
http://localhost:4848/management/domain.json

Migrating from WildFly to Payara Community

7

 To use Payara Server Community as a standalone server, you simply run the DAS without adding any
additional instances in the domain. A “standalone” DAS server offers both a management interface
and a server that can run applications deployed to it. In this mode, all management commands auto-
matically work on the DAS server, there’s no need to specify the command target. Alaos, applications
are automatically deployed to the DAS server, any created resources and configuration changes are
applied to the DAS server by default.

By default, each domain is initially configured to have a single DAS without any additional instances.
Therefore, to run Payara Server Community as a standalone server, it's enough to just start the
domain from the command line:

syntax: bash

<Payara_Home>/bin/asadmin start-domain

You can create and manage multiple domains that have a single DAS and run them independently as
“standalone” servers. Such independent DAS servers can still be configured to join the same Domain
Data Grid, if needed, by configuring a different grid discovery mode.

Rather than managing multiple standalone domains, you may want to leverage a multi-instance
domain. To this end, a default Payara Server Community domain that has a single DAS can be extended
to have one or more standalone server instances. These domain instances are managed by the admin
server, which acts as a Central Domain Controller.

Domain instances can run on the same physical machine or on a different machine and communicate
with the DAS over the network. Also, they can automatically join the same data grid and form a high
availability cluster without any additional configuration. Domain instances that run on the same host
are grouped into a node.

On WildFly, managed instances communicate with the Domain Controller via a separate Host
Controller process.

The Host Controller is a Separate Java Process:

1. Separate from the Domain Controller:
• Each machine (or host) in a WildFly domain has a Host Controller that manages one or

more Server Instances on that machine.
• The Host Controller runs as a separate Java process on each host, distinct from the

Domain Controller, which may run on the same machine or a different machine.
2. Role of the Host Controller:

• The Host Controller's main responsibility is to communicate with the Domain Controller
and manage the Server Instances on its host according to the domain-wide configura-
tion provided by the Domain Controller.

• It retrieves configuration data from the Domain Controller and applies it to the server
instances under its control.

• The Host Controller does not handle actual deployments or runtime activities itself—
that's the job of the Server Instances it controls.

Migrating from WildFly to Payara Community

8

3. Starting the Host Controller:
• The Host Controller is typically started using the domain.sh (Linux/Unix) or domain.bat

(Windows) script, which is different from the standalone server script (standalone.sh or
standalone.bat).

• When started, the Host Controller process connects to the Domain Controller to receive
its configuration instructions, which includes starting or stopping the Server Instances
it manages.

4. Master vs. Slave Host Controller:
• In a WildFly domain, there is one Master Host Controller that also serves as the

Domain Controller, which centrally manages the domain configuration.
• Other machines in the domain run Slave Host Controllers that connect to the Master

Host Controller (Domain Controller). These Slave Host Controllers manage the server
instances on their respective machines based on the configuration provided by the
Domain Controller.

5. Server Instances Controlled by the Host Controller:
• The Server Instances that run your applications (e.g., WAR or EAR artifacts) are

also separate Java processes. They are started, stopped and managed by the
Host Controller.

• Each Server Instance is another JVM process running on the machine, and the Host
Controller manages the lifecycle and configuration of these instances.

Domain instances within Payara Server Community communicate directly with the DAS As Payara
Server doesn’t require a separate Host Controller, users can benefit from highly simplified cluster
setup and management.

Each standalone instance can each have its own configuration or share a common one. In both
cases, configurations are managed in the DAS, which distributes configuration changes to running
instances. Alternatively, instances retrieve updates from the DAS at startup.

To simplify management or create a command target, standalone instances can be organized into a
deployment group. For example, an application can be deployed to all instances in a deployment
group with a single command, or all instances in the same deployment group can be launched or
stopped with a single command.

Please note that it's recommended that all instances in the same deployment group share the same
configuration to make them behave as replicas of a single configuration unit. This configuration can
be parameterized for each instance to account for any differences, such as specific port bindings.

A single Payara Server Community installation can contain a configuration for multiple domains.
It's possible to run multiple domains at once if they use a different set of ports. Such domains are
independent of each other, they only share the same Payara Server Community installation files.
However, it is typically more useful for multiple domains to have different domain configurations.
These can be switched between when needed. This is often the case during development or when
running disparate test suites in different configurations.

Migrating from WildFly to Payara Community

9

As an example, the default Payara Server Community installation comes with one domain availa-
ble out of the box: This is called "domain1" and is tuned for development purposes. Payara Server
Enterprise comes with an additional domain, named "production", which is tuned for running pro-
duction environments.

Thus, Payara Server Community is simpler to configure and manage than WildFly, making our solution
ideal for modern containerized environments.

Clustering and High Availability
The basic concepts of clustering in Payara Server Community are very similar to those in WildFly.
The following components in WildFly and Payara Server are equivalent:

WildFly Payara Server Community Description

Domain Controller DAS Main administration server

Managed Server Standalone Instance A server managed by the administration
server

Cache Container Domain Data Grid Distributed and replicated memory
cluster

Server Group Deployment Group A logical group of managed servers

Payara Server Community's Domain Data Grid is a similar concept to the Infinispan subsystem of
WildFly. It provides a backbone for distributed memory and caches for instances in the Payara Server
Community domain. It's flexible and can scale up and down easily just by starting or stopping addi-
tional Payara instances on the network. Unlike WildFly, which allows configuring multiple distinct
cache containers, Payara Server Community provides a single Data Grid. This is pre-configured and
available for all standalone instances.

Deployment Groups in Payara Server Community are comparable to Server Groups in the Managed
domain mode of WildFly and offer similar functionalities. All instances in a Deployment Group can be
managed together, e.g. started and stopped at the same time, and applications can be deployed or
undeployed on them in a single step. High availability and failover mechanisms work over instances
in the same deployment group.

Migrating from WildFly to Payara Community

10

Key Differences Between Deployment Groups and Clusters in Payara Server Community:

Feature Deployment Groups Clusters

Primary Focus Simplifying application deployment Ensuring high availability, scala-
bility, and load balancing

Configuration
Consistency

Instances can have independent
configurations

Instances generally share the
same configuration

High availability Do not inherently provide high availa-
bility, instances must join a Data Grid

Provides high availability with
failover and session replication

Session Replication Not automatically provided Session replication through
Hazelcast

Use Case Managing application deployment
across heterogeneous instances

Ensuring application availabil-
ity, scalability, and failover

Provisioning Support

WildFly (and JBOSS EAP) relies on a provisioning tool, called Galleon, that allows users to customize
and create tailored server distributions. It is designed to help developers and administrators build
custom WildFly server instances by including only the necessary components and subsystems. This
capability, in turn, helps optimize server performance and reduce the overall footprint of the server.

The primary purpose of Galleon is to help reduce the footprint of WildFly by removing modules that
are not required for a specific set of applications from a cluster. The Payara Platform achieves the
same by providing a much smaller footprint distribution, known as Payara Micro Community. This is
a lightweight, microservices-ready version of Payara Server Community. It is designed specifically
for running Jakarta EE applications in microservices or cloud-native environments.

While Payara Micro Community doesn’t allow for custom provisioning like Galleon, it is designed to
run only the core modules needed to execute your application, thus keeping a minimal footprint.
Payara Micro Community also uses a dynamic class path that helps loading only what is necessary
for the application being deployed. This makes its memory footprint inherently limited compared
to Payara Server Community.

Even more, Payara Server Community and Payara Micro Community support fine grained configura-
tion of individual modules through the asadmin CLI sub-commands, which can be easily configured
and executed from scripts in containerised and cloud environments.

Migrating from WildFly to Payara Community

11

Security
There are a number of tools that ensure the secure access to Payara Server Community and appli-
cations running on it on multiple levels:

• Transport Layer Security (TLS)/ Secure Sockets Layer (SSL) network encryption using gener-
ated self-signed and custom certificates

• Authentication using several built-in mechanisms and means to provide a cus-
tom mechanism

• Mapping of user groups to application roles

• Securing applications based on user roles

• Auditing service to record administration activity for auditing reasons

Payara Server Community comes with a pre-configured certificate and has the capability to generate
additional ones as needed. Self-signed certificates are used by default for all encrypted communi-
cation, e.g. for the default HTTPS listener and the secured Java Remote Method Invocation (RMI)
channel. Payara Server Community also offers multiple public certificates for known trusted certi-
fication authorities to improve the validation of chain certificates.

Authentication and authorization in Payara Server Community are provided by security realms. They
are used to authenticate incoming requests using an associated Java Authentication and Authorization
Service (JAAS) login module. After a login module authenticates a request, it often retrieves infor-
mation about the user's roles from the realm that called it. For comparison, a security domain in
WildFly can be compared to a realm in Payara Server Community.

WildFly uses realms to provide authentication and authorization mainly for securing administration
management interfaces. On top of that, WildFly relies on the concept of security domains, which are
used to associate multiple login modules and realms with deployed applications. For comparison,
a security domain in WildFly can be compared to a realm in Payara Server Community, but it can
combine multiple login modules.

In WildFly, login modules are not used by realms but the other way around. A WildFly security
domain associated with an application delegates to one or more login modules for authentication.
At least one of the login modules in a security domain is usually a RealmDirect module, which then
delegates to a specific realm.

Payara Server Community only allows the direct association of a single realm with an application, so
that the realm takes the role of the WildFly's security domain. Multiple realms can be associated with
an application using the standard Java EE Security API because Payara Server Community exposes
each security realm as an Identity Store using the Payara-specific extension APIs.

The management interfaces of both WildFly and Payara Server Community are secured by a file-based
mechanism. WildFly uses the ManagementRealm security realm, while Payara Server Community
uses the admin-realm realm, which is an instance of a file realm.

Migrating from WildFly to Payara Community

12

The following table summarizes how basic security concepts in WildFly map to those in Payara
Server Community:

WildFly Payara Server Community

Security Domain Realm

Login Module Realm

Security Realm FileRealm

ManagementRealm admin-realm

Clustering in Payara Server Community
and WildFly

Clustering in WildFly is composed of:

• A Domain Controller server managing several servers in a Managed Domain configuration

• Several servers and their host controllers managed by the Domain Controller

• The Infinispan subsystem that manages and coordinates distributed cache for use by
WildFly clustering services

The concept of clustering in Payara Server Community is very similar to the concept of clustering in
WildFly. It consists of:

• A DAS managing several Payara instances in the domain

• Several Payara instances managed by the DAS (directly, not via a host controller)

• Domain Data Grid based on Hazelcast that manages and coordinates distributed cache for
use by Payara Server Community clustering services

Subsystems providing distributed memory are also similar, in their concept, to caching. Both are based
on embedded in-memory data grid solutions, which are well integrated. Within WildFly, this is offered
through Infinispan: An in-memory data grid and distributed caching solution. Its main purpose is:

• Caching: Store data in a distributed (using different nodes) in-memory cache so that
retrieval is faster than from remote sources. This is a typical optimization for slowly chang-
ing data sets

• Transactions: Infinispan can be used in a transactional way

• Events: Events can be distributed between different nodes triggering listener code

Migrating from WildFly to Payara Community

13

Infinispan can also be used as JCache implementation, so that it is an implementation of the
JSR-107 specification.

The same functionalities are available within Payara Server with the help of the Domain Data Grid.
This is implemented using open-source Hazelcast:

• Data can be cached using a manual operation (basically, changing the statements
CacheFactory.getCache to hazelcastInstance.getMap for example) or use the JCache option
backed by the Hazelcast library.

• Hazelcast has support for the Java EE Transaction API specification. This means you can
put data into the grid in a transactional way. It can even join in an XA transaction as part of a
2-phase commit transaction.

• Just like Infinispan, events can be fired to trigger listener code on remote nodes. Payara
Server Community takes advantage of this feature for applications to trigger standard CDI
events as remote events that can be observed by other standalone instances in the Domain
Data Grid.

Both Infinispan and Hazelcast provide querying, distributed processing, off-heap storage and they
both support cloud environments from multiple major cloud providers. Some of the more advanced
features, like off-heap storage or WAN replication, are only available in Hazelcast Enterprise edition,
for which a separate license is required. This all means that all use cases for which you are using
Infinispan functionality can be mapped in a one-to-one way to the corresponding Hazelcast func-
tionality, which is included by default with Payara Server Community.

There are also some differences between WildFly and Payara Server Community in clustering. Payara
Server Community doesn't use separate Host Controller processes to manage Payara instances.
Instead, the instances either just start and connect to the DAS or the DAS manages them over SSH,
or Docker API directly, without any intermediary service. The DAS is even able to install and start
instances this way on remote hosts without any user intervention if it has the necessary permissions
via SSH. The DAS uses a concept called Node, which is a mere configuration component to store infor-
mation for accessing and managing a remote host system and standalone instances installed on it.

Overview of Clustering in Payara Server Community
Payara Server Community supports creating cluster instances out of the box, without any additional
configuration or support tools. It is possible to create a cluster instance simply by creating an addi-
tional domain instance using the DAS. The DAS and all running domain instances automatically form
a data grid cluster.

Clustering in Payara Server Community has two levels. On the first clustering level, all running
standalone instances join the same data grid, which means they participate in sharing and replicat-
ing distributed memory and caches. Payara Server Community offers several ways for standalone
instances to find and join the data grid, called discovery modes (which is the concept implemented
in Hazelcast). The default discovery mode, called "domain", instructs all instances to search for the
DAS at a specific host and port. It's also possible to use discovery modes that support multicast,

Migrating from WildFly to Payara Community

14

IP address ranges and DNS or Kubernetes clusters. Payara Server Community integrates some
Hazelcast configuration options natively as Payara Server Community Data Grid options. Additional
configuration options can be provided by using a custom Hazelcast configuration file.

The Domain Data Grid is flexible and can scale up and down easily just by starting or stopping addi-
tional Payara instances on the network. Moreover, a single Domain Data Grid can be joined not only
by Payara Server Community instances but also by Payara Micro Community instances, supporting
the use of microservices.

Payara Micro Community can thus be used to run several smaller services together with the main
application in the same grid, effectively sharing memory and communicating together using the
same clustering infrastructure.

DAS

Domain Data Grid
Shared in Memory Data Store (Data Grid)

Instance 3
(DG 2)

Instance 1
(Deployment

Group 1)

Instance 4
(DG 2)

Instance 5
(DG 1&2)

Micro 1

Micro 2

Instance 4
(DG 1)

On the second clustering level, chosen domain instances can form a deployment group. All instances
in a deployment group can be managed together, e.g. started and stopped together. Also, applica-
tions and resources can be deployed or undeployed on them in a single step. High availability and
failover mechanisms work over instances in the same deployment group.

Migrating from WildFly to Payara Community

15

Standalone instances can be run locally or on remote hosts. Instances running on the same host
are grouped under a node. There are four types of nodes according to how instances are started by
the DAS:

• SSH - instances are started by the DAS over an SSH connection. Payara Server Community
installation is copied over SSH if needed

• DCOM (deprecated) - instances are started by the DAS over DCOM. Payara Server
Community installation is copied over DCOM if needed

• CONFIG - instances are not started by the DAS. They are started separately and contact the
DAS via its management port

• DOCKER - instances are started in a Docker container using a Docker Engine REST
Admin interface

High Availability Support
Payara Server Community supports multiple failover mechanisms to ensure that applications will
be highly available:

• HTTP Session Replication - HTTP Session data is available on all instances in the Domain
Data Grid

• Stateful EJB Replication - Stateful Enterprise Java Beans (EJB) data is available on all
instances in the Data Grid

• Message Queue Broker connection failover - connection failover to another broker in
the cluster

• Single Sign-on (SSO) state failover - SSO data is available on all instances in the Data Grid

• RMI interface over the Internet Inter-Orb Protocol (IIOP) failover, or RMI-IIOP failover - a
remote EJB call fails over to another instance in a deployment group

• Distributed application-level cache - a caching API to store and retrieve data from a cache
distributed and replicated across multiple instances in the same cluster (Data Grid)

• JPA Second-level cache - distributed cache of JPA entities can be synchronized either by
using a mechanism on top of the distributed application-level cache or via JMS brokers

Payara Server Community also supports RMI-IIOP load balancing to distribute IIOP client requests
to remote EJBs evenly across a deployment group. However, the RMI-IIOP load balancing on Payara
Server Community isn’t based on Data Grid. HTTP requests can be load balanced using an external
proxy server, like Apache HTTP or Nginx, with either session replication or sticky sessions. Payara
Server Community doesn't support load balancing guided by server-side load balance factors, unlike
WildFly, which supports it using the mod_cluster subsystem.

Most of the replication and data synchronization across Payara Server Community instances uses
the Data Grid powered by the community version of Hazelcast. This technology allows the flexible

Migrating from WildFly to Payara Community

16

connection of Payara Server Community instances to a data grid of interconnected instances, which
can therefore communicate with each other and exchange data. Each instance offers some memory
to store the distributed information and replicas of data stored in other instances. This makes the
data grid robust and resilient to data losses, as data is recreated from replicas whenever an instance
is disconnected and its data lost.

Payara Server Community allows encrypting all data stored in the Hazelcast data grid to increase
the security of the system and secure data transferred over the network.

Migrating Configuration of Server Resources

Most often, the first thing you need to migrate when porting your application from WildFly to Payara
Server Community is the configuration of resources provided by the server and consumed by the
application. Even if resources like JDBC data sources, mail sessions and security realms are often
used by the applications in a standard and portable way, they often need to be configured in server
configuration outside of the applications.

This configuration in WildFly and Payara Server Community is different and can't be just copied
during migration. The following sections describe what to expect when migrating the configuration
of various resources and how to configure those resources in Payara Server Community.

Data sources
Data sources are by far the most frequently used resources configured in WildFly outside of the
deployed application. In WildFly, you need the following to create a data source so that it can be
used by deployed applications:

1. Provide a Java Database Connectivity (JDBC) driver to WildFly

2. Define a data source that references the driver and configure its connection pool

3. Add a Java Naming and Directory Interface (JNDI) name to the data source to make it avail-
able to the applications

The recommended way to install a JDBC driver into WildFly is to deploy it as a regular JAR deploy-
ment. When you run WildFly in domain mode, the JAR file will be distributed to all servers in the
domain as other regular deployments.

In Payara Server Community, JDBC connection pools for data sources are configured separately. A
data source in Payara Server Community is just a JNDI resource definition that exposes a referenced
JDBC connection pool to applications as a Data source object under a specified JNDI name. In Payara
Server Community, the following is needed to configure a data source:

Migrating from WildFly to Payara Community

17

1. Provide a JDBC driver to Payara Server Community

2. Create a JDBC connection pool that references the driver and configure it

3. Create a JDBC source with a JNDI name that references the JDBC connection pool

In Payara Server Community, the recommended way to install the JDBC driver is to add a JAR with
the driver as a server library. If you have multiple instances in a Payara Server Community domain,
this JAR file will be distributed to them automatically in the same way as all custom JARs added by
following the same process, so that all instances can access it.

As a result, the amount of work done in Payara Server Community to install and distribute a JDBC
driver JAR is the same as WildFly. But the way how it works is different. In Payara Server Community,
unlike in WildFly, the JAR won't appear in the list of deployed modules. It will be simply added to
the class path for all applications to access it. This is enough for the connection pool to access and
use the JDBC driver.

To work with custom JAR files in Payara Server Community, there are these asadmin commands:

• add-library - to install a library to the domain
• remove-library - to uninstall the library from the domain

For example, a command-line command to add a MySQL driver JAR would look like:

(syntax: Bash script)

<Payara_Home>/bin/asadmin add-library /path/to/db-driver.jar

After you install the driver JAR, you can continue by creating a JDBC connection pool that uses the
driver, followed by creating a JDBC resource that exposes the connection pool as a data source via
JNDI.

As an example, to create a data source for H2 database using the asadmin CLI, you can use the
following command:

create-jdbc-connection-pool --datasourceclassname org.h2.Driver --restype

javax.sql.XADataSource --property portNumber=1527:password=APP:user=APP:serverN

ame=localhost:databaseName=sun-appserv-samples sample_h2_pool

Migrating from WildFly to Payara Community

18

Security Realms
Enterprise Java and Jakarta EE applications are often secured by a mechanism specified by the
realm name in the application descriptors. However, the application only specifies the name of the
realm to use, and all the configuration needs to be done in the server.

In WildFly, the realm name specified in the application is bound to a security domain that is respon-
sible for authenticating the users. The security domain then delegates to multiple login modules and
subsequently to user realms defined in WildFly. The resulting security chain during authentication
is as follows:

1. application is associated with a single security domain
2. the security domain delegates to one or more login modules
3. a login module authenticates the user and optionally provides a list of roles
4. if used, RealmDirect login module delegates to a realm to authenticate and provide a list

of roles

Realms in Payara Server Community are different than realms in WildFly, as they behave in a similar
manner to WildFly login modules. Unlike WildFly, which allows connecting multiple login modules
to a security domain, Payara Server Community binds the application's realm name directly to a
realm on the server. While this can reduce flexibility because only a single realm can be used with
an application, it can also simplify the configuration.

The chosen realm then delegates authentication and authorization to a JAAS login module bound
by its name (JAAS context). Therefore, the security chain in Payara Server Community is:

1. application is associated with a single realm
2. the realm usually delegates to a JAAS login module for authentication
3. optionally, the login module retrieves the list of roles from the realm

If a more complex authentication and authorization mechanism is required, a custom realm needs
to be developed and installed into Payara Server Community. Alternatively, multiple realms can be
associated with an application using the standard Java EE Security API.

If a security domain in WildFly uses only a single login module that matches a realm in Payara Server
Community, then the migration to Payara Server Community is rather straightforward, as the login
module can be directly converted to a matching realm. This, in turn, will be given the same name as
the security domain in WildFly so that it matches the deployed application.

As an example, consider the following login module that uses an H2 data source from WildFly:

Migrating from WildFly to Payara Community

19

<security-domain name="mySecurityDomain" cache-type="default">

 <authentication>

 <login-module code="Database" flag="required">

 <module-option name="dsJndiName" value="java:/jdbc/MyDataSource"/>

 <module-option name="principalsQuery" value="SELECT password FROM

users WHERE username = ?"/>

 <module-option name="rolesQuery" value="SELECT role, 'Roles' FROM

roles WHERE username = ?"/>

 <module-option name="hashAlgorithm" value="SHA-256"/>

 </login-module>

 </authentication>

</security-domain>

This module can be changed into a Payara Server Community realm by first creating a data source
like the following:

<security-domain name="mySecurityDomain" cache-type="default">
 <authentication>
 <login-module code="Database" flag="required">
 <module-option name="dsJndiName" value="java:/jdbc/
MyDataSource"/>
 <module-option name="principalsQuery" value="SELECT password
FROM users WHERE username = ?"/>
 <module-option name="rolesQuery" value="SELECT role, 'Roles'
FROM roles WHERE username = ?"/>
 <module-option name="hashAlgorithm" value="SHA-256"/>
 </login-module>
 </authentication>

</security-domain>

Migrating from WildFly to Payara Community

20

And then using the data source within a JDBC realm, which would look something like the following:

<security-service>

 <auth-realm name="JDBCRealm" classname="com.sun.enterprise.security.auth.

realm.jdbc.JDBCRealm">

 <property name="jaas-context" value="jdbcRealm"/>

 <property name="datasource-jndi" value="jdbc/MyDataSource"/>

 <property name="user-table" value="users"/>

 <property name="user-name-column" value="username"/>

 <property name="password-column" value="password"/>

 <property name="group-table" value="roles"/>

 <property name="group-name-column" value="role"/>

 <property name="digestrealm-password-enc-algorithm" value="SHA-256"/>

 </auth-realm>

</security-service>

However, there may be differences in how some matching realms are configured and behave. The
following table compares realms in Payara Server Community to similar login modules in WildFly:

WildFly Login Module Payara Server
Community Realm Notes

Certificate,
CertificateUsers CertificateRealm

CertificateRoles CertificateRealm
WildFly reads roles from a file. Payara
Server Community uses mapping rules in
application descriptors.

Database, DatabaseUsers JDBCRealm
WildFly uses a query to retrieve users and
roles. Payara Server Community expects a
certain database structure.

Ldap, LdapUsers LDAPRealm

Simple, PropertiesUsers,
UsersRoles, RealmDirect FileRealm

FileRealm stores usernames, passwords
and roles in a file with a custom format,
not as properties files.

Migrating from WildFly to Payara Community

21

JavaMail Sessions
Configuring a JavaMail session is rather straightforward in Payara Server Community. JavaMail ses-
sions are domain-level resources, so they are shared by every instance in the domain. To configure
a session, you just need to create a JavaMail session resource and configure the following:

1. connection and authentication to the Simple Mail Transfer Protocol (SMTP) server

2. JNDI name of the resource

3. default sender address

This all can be done using a single asadmin command called create-javamail-resource.
For example:

asadmin create-javamail-resource \

 --mailhost smtp.example.com \

 --mailuser user@example.com \

 --fromaddress user@example.com \

 --enabled true \

 --storeprotocol imap \

 --storeprotocolclass com.sun.mail.imap.IMAPStore \

 --transportprotocol smtp \

 --transportprotocolclass com.sun.mail.smtp.SMTPTransport \

 --property mail.smtp.auth=true:mail.smtp.starttls.enable=true:mail.smtp.

port=465:mail.smtp.ssl.enable=true \

 mail/Default

Conversely, WildFly splits the configuration to two components and first requires the creation of
an outbound socket binding for the SMTP connection. Subsequently, it is necessary to create the
JavaMail session resource with a JNDI name and this binding.

Migrating from WildFly to Payara Community

22

A typical WildFly configuration looks like the following:

<subsystem xmlns="urn:jboss:domain:mail:3.0">
 <mail-session jndi-name="java:/jboss/mail/Default" debug="false">
 <smtp-server outbound-socket-binding-ref="mail-smtp">
 <login name="user@example.com" password="password"/>
 <ssl enabled="true"/>
 </smtp-server>
 </mail-session>
</subsystem>

<outbound-socket-binding name="mail-smtp">
 <remote-destination host="smtp.example.com" port="465"/>

</outbound-socket-binding>

Such a configuration can be mapped to the following Payara Server Community configuration:

<resources>

 <mail-resource

 jndi-name="mail/Default"

 mail-host="smtp.example.com"

 mail-user="user@example.com"

 from="user@example.com"

 mail-password="password"

 enabled="true">

 <property name="mail.smtp.auth" value="true"/>

 <property name="mail.smtp.starttls.enable" value="true"/>

 <property name="mail.smtp.port" value="465"/>

 <property name="mail.smtp.ssl.enable" value="true"/>

 </mail-resource>
</resources>

Migrating from WildFly to Payara Community

23

Migrating Keycloak

Applications on WildFly are often secured using Keycloak, which supports centralized Identity and
Access Management and Single Sign-On. From Keycloak 17, the default Keycloak distribution is
powered by Quarkus. Legacy WildFly powered distribution was supported only until June 2022.
Payara Server Community supports the connection to a standalone instance of Keycloak. Hence,
there are several alternatives for migrating your security infrastructure to Payara Server Community:

• Easily configure Payara Server Community to use your existing Keycloak server via OpenID
Connect (OIDC) protocol.

• Use the native Single Sign-On solution in Payara Server Community
• Migrate from Keycloak to another Identity and Access Management solution

The best way to integrate with Keycloak is to migrate your application to authenticate using OAuth
2.0 and use Keycloak as an OAuth 2.0 provider. Keycloak can easily be run as a standalone server
in a docker container or in the cloud. OAuth 2.0 is supported in Payara Server Community using the
OAuth 2.0 authentication definition in combination with the standard Jakarta Security API via the @
OpenIdAuthenticationMechanismDefinition annotation. Within your application code, you can easily
get the Role and Principal details by injecting the OpenIdContext Object with the following code:

@Inject

 OpenIdContext openIdContext;

openIdContext.getClaims();

It is also possible to authenticate on the web page using an OAuth 2.0 JavaScript library and pass
the acquired JWT token to the backend services using the MicroProfile JWT mechanism supported
by Payara Server Community.

You can read more about OAuth 2.0 authentication definition in Payara Server Community here and
about MicroProfile JWT here.

Payara Server Community also provides native SSO support. This can easily replace Keycloak if all
applications are deployed in the same Payara Server Community domain and they authenticate users
through the same security realm. When SSO is enabled on Payara Server Community, a user that is
authenticated by one application is then automatically authenticated in all other applications that
use the same realm until logged out in one of the applications.

This works by storing the security context after successful authentication and distributing it to all
other applications as if the user logged in simultaneously to all the applications. Any authentication
mechanism supported by Payara Server Community, e.g. Lightweight Directory Access Protocol
(LDAP), can be used to authenticate users.

https://docs.payara.fish/community/docs/Technical Documentation/Public API/OAuth Support.html
https://docs.payara.fish/community/docs/Technical Documentation/MicroProfile/JWT.html

Migrating from WildFly to Payara Community

24

Cloud

Containerized environments are becoming more important these days. WildFly has its own offi-
cial example Docker image, and various examples can be found on how an Orchestration tool like
Kubernetes can be used in combination with WildFly.

Payara Server Community is no exception in the cloud evolution. We too have official Docker
images on DockerHub. Also, we created Payara Micro Community, a specialized packaging of
Payara Server Community that is optimized for cloud and micro-service environments. With Payara
Micro Community, you can easily create a setup that is maintained by orchestration tools, such as
Kubernetes and Docker Swarm, and even makes use of the functionality of these tools, like DNS
management within Kubernetes.

Payara Services also provides Docker images for Payara Server Full Community and Payara Server
Node Community, which can help you to form a traditional domain managed cluster within contain-
erized environments. You can find the images here: https://hub.docker.com/u/payara. As a result,
just like on WildFly, you can run Payara Server Community on cloud providers like Azure, Amazon,
Google Cloud, as well as on OpenShift.

IDE Support

All major Integrated Development Environments (IDEs), like IntelliJ® IDEA, Apache NetBeans,
Eclipse® IDE and Visual Studio Code, are supported by both servers. Thus, you can use your favour-
ite IDE to develop your application. Apache NetBeans supports Payara Server Community out of the
box. The plugins for the other IDEs are maintained by the Payara Service team.

IDE plugins for Payara Server Community support automatic redeployment when code is changed
and compiled. This shortens the turnaround between when a code is changed and when the appli-
cation is being updated and ready to be tested.

Payara Server Community also supports automatic deployment and redeployment of an application
by dropping the application artifact in the auto-deployment folder. This can be useful if no IDE can
be used for automatic redeployment.

https://hub.docker.com/u/payara

Migrating from WildFly to Payara Community

25

Innovation

The team behind Payara Server Community is also actively working on the future of enterprise Java
applications. Payara Services is an Eclipse Foundation Solutions Member and a Strategic Member of
the Jakarta EE working group, shaping the future of Eclipse Jakarta EE™ along with future versions
of the platform.

We are also helping related technologies and frameworks. For example, we are also actively involved
in the Eclipse MicroProfile specifications. We are not only defining the specifications together with
the other involved parties, but our application server technology was one of the first that combined
the MicroProfile implementations and the ability to run Jakarta EE applications in a single runtime.
This gives you the ultimate flexibility to choose the right mix of dependencies for your use case
while allowing you to implement a strategy of gradual migration from the Java EE platform to a more
micro-service alike application structure.

For microservice applications, Payara Community provides Jakarta EE Web Profile specifications,
some additional Jakarta EE specifications, like Jakarta Concurrency, as well as MicroProfile specifi-
cations in a single JAR file. This Hollow JAR deployment model (where the server is in one single JAR
and runs your application packaged as a WAR file) has many advantages over the Fat JAR approach.
Each single application code change no longer results in the replacement of the layer in a Docker
environment, which contains also the server runtime. This reduces image sizes, bandwidth usages
and deployment times.

But enhancements are not only implemented outside the Java EE area. For example, Payara Server
Community has many additions in the area of application security. Using the Security API (added in
Java EE 8), developers can benefit from various authentication and authorization schemes within
Payara Platform Community, such asOAuth2, OpenIdConnect and JWT tokens.

Why Payara Platform Community?

Payara Platform Community is notably better then WildFly in the following areas :

Cloud-Native and Aggressively Compatible
Payara Platform Community is optimized for cloud, on-premises and hybrid environments. As Payara
Services is a Solutions Member of the Eclipse Foundation and Strategic Member of the Jakarta EE
working group, you'll find that Payara Platform Community is positioned for future compliance with
Jakarta EE.

Besides, Payara Platform Community is container-friendly, incorporating Docker and Kubernetes in
its offering. It is also compatible with services you may already be using, such as Microsoft Azure™,
Amazon AWS and MicroProfile.

Migrating from WildFly to Payara Community

26

User-Friendly and Intuitive
Payara Platform Community offers a comprehensive and user-friendly administration console with
intuitive navigation, making it ideal for teams of varying expertise. Its straightforward setup and
configuration reduce onboarding time, maximizing developers’ productivity.

Open-Source Software with a Future You Help Define
Being open-source, Payara Platform Community allows you to submit your ideas, feedback and
collaboration to ensure Payara Server Community is the best option for developing, experimenting
and testing enterprise Java applications, and Payara Micro Community the best option for enterprise
Java applications in a modern virtualized infrastructure.

In addition, Payara Platform Enterprise customers are invited to customer advisory calls every six
months to help drive the evolution of Payara Platform, as new features and enhancements are
developed to meet customer needs.

Stable, Production-Ready Option With Full Support
With seamless upgrade paths to the commercial Payara Platform Enterprise, Payara Platform
Community provides flexibility for growth as organizational needs evolve. When you download the
Payara Platform Enterprise, you're downloading and adopting a production-ready version of Payara
Server or Payara Micro that is suitable for mission-critical applications. You can download a produc-
tion-ready version from the download section of the website.

With a 10-year support lifecycle and a monthly release schedule for Payara Platform Enterprise cus-
tomers that includes bug fixes and patches, Payara Platform Enterprise offers security and stability
without the need for upgrading every year or two. Payara Platform Enterprise customers enjoy fast
issue resolution directly from our global team of expert engineers for both production and devel-
opment issues. Users can also benefit from prioritized access to new features and send specific
feature requests.

https://www.payara.fish/page/payara-enterprise-downloads/

Migrating from WildFly to Payara Community

27

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

Payara Services Ltd 2024 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Microsoft and Microsoft Azure are registered trademarks of Microsoft.

Eclipse, GlassFish, and MicroProfile are trademarks of Eclipse Foundation, Inc.

Oracle, WebLogic, JDeveloper, and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their

respective owners.

NetBeans is a registered trademark of the Apache Software Foundation.

IntelliJ® is a registered trademark owned by Jetbrains s.r.o.

Hazelcast is a trademark of Hazelcast, Inc. All other trademarks used herein are the property of their respective owners.

Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or other countries. Docker,

Inc. and other parties may also have trademark rights in other terms used herein.

Kubernetes is a registered trademarks of The Linux Foundation in the United States and/or other countries.

Jakarta EE is a registered trademark of the Eclipse Foundation.

© 2024 Payara Services Ltd. All rights reserved.

FREE TRIAL

PAYARA ENTERPRISE
FREE TRIAL

PAYARA CLOUD
FREE TRIAL

Interested in Payara? Try Before You Buy

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/page/free-trials/?utm_source=PDF&utm_medium=resource&utm_campaign=payara-resource-PDF-document
https://www.payara.fish/page/payara-enterprise-downloads/?utm_source=PDF&utm_medium=resource&utm_campaign=payara-resource-PDF-document
https://www.payara.fish/page/payara-enterprise-downloads/?utm_source=PDF&utm_medium=resource&utm_campaign=payara-resource-PDF-document
https://www.payara.fish/page/payara-enterprise-downloads/?utm_source=PDF&utm_medium=resource&utm_campaign=payara-resource-PDF-document
https://www.payara.fish/products/payara-cloud/?utm_source=PDF&utm_medium=resource&utm_campaign=payara-resource-PDF-document#buy
https://www.payara.fish/products/payara-cloud/?utm_source=PDF&utm_medium=resource&utm_campaign=payara-resource-PDF-document#buy
https://www.payara.fish/products/payara-cloud/?utm_source=PDF&utm_medium=resource&utm_campaign=payara-resource-PDF-document#buy

	Introduction
	About Payara Services and Payara Platform Community
	WildFly vs. Payara Platform Community
	Releases
	Technology Comparison
	Administration
	Operating Modes
	Clustering and High Availability
	Provisioning Support

	Security

	Clustering in Payara Server Community and WildFly
	Overview of Clustering in Payara Server Community
	High Availability Support

	Migrating Configuration of Server Resources
	Data sources
	Security Realms
	JavaMail Sessions

	Migrating Keycloak
	Cloud
	IDE Support
	Innovation
	Why Payara Platform Community?
	Cloud-Native and Aggressively Compatible
	User-Friendly and Intuitive
	Open-Source Software with a Future You Help Define
	Stable, Production-Ready Option With Full Support

