
Jakarta Concurrency:
All You Need to Know

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. Fact Sheet

Jakarta Concurrency: All You Need to Know

Contents

Introduction 1

Why Do We Need Jakarta Concurrency? 1

What is the Advantage Compared to Java SE Threads? 1

What are the Main Components? 2

Managed Executor Service 3

Managed Thread Factory 3

Context Service 3

Resource Configuration 4

What is New in Jakarta EE 10 / Concurrency 3.0? 4

@Asynchronous 4

Definition of Resources by Annotation 5

Adding Context to java.util.concurrent 5

Thread Context Providers 6

Top Tips 6

Get Started with Jakarta Concurrency 3.0 and Payara Platform 6

Further Reading 7

Jakarta Concurrency: All You Need to Know

1

Introduction

Jakarta EE, previously Java EE, is a set of specifications that enables the worldwide community of
Java developers to work on cloud native Java enterprise applications. It is an open source project
maintained by the Eclipse Foundation.

Jakarta Concurrency is one of its key specifications, which concentrates on user-defined asynchro-
nous execution.

Why Do We Need Jakarta Concurrency?

Programming in Jakarta EE mostly frees a developer from thinking about threads, parallelism, syn-
chronization, etc. It happens automatically in most use cases with satisfactory results and per-
formance. All threads are owned by the application server, and it can effectively manage them,
pre-allocate, or remove on shutdown.

The situation changes when the amount of work to deliver is large – for example, creating huge
reports or processing many REST calls. There are a limited number of threads for processing events,
and they can be exhausted. Asynchronous processing is here to help.

Jakarta Concurrency is an alternative to the java.util.concurrency package known to any
experienced Java programmer.

Code processing data in a separate thread needs to know the context in which it is executed. Which
user is logged in? What are his rights? What is the data stored in the session? What is the classpath
of the calling module? What are the running transactions? All that information is stored in the pro-
vided context.

A bit more advanced question is: “What data source is set in the calling module?” Yes – the setup
can be set per component (JNDI “java:comp/” name) and still use shared code; the evaluation
respects the calling context.

What is the Advantage Compared to Java SE Threads?
Jakarta Concurrency is highly configurable. The big advantage is that the administrator can accom-
modate the behavior of a final application to the hardware running the server. The thread pool can
be set to one thread when running on a small server or to hundreds of threads for “Big Iron” (an
extremely large, expensive and fast computer) with hundreds of CPU cores.

https://jakarta.ee/
https://www.eclipse.org/org/
https://jakarta.ee/specifications/concurrency/
https://jakarta.ee/specifications/concurrency/3.0/jakarta-concurrency-spec-3.0.html#container-thread-context

2

Options for Serverless in Java

What are the Main Components?

Concurrency is accessible by all other specs, as explained in the image from the Concurrency
specification. See the orange-colored part of the diagram!

Source: https://jakarta.ee/specifications/concurrency/3.0/jakarta-concurrency-spec-3.0.html#-
container-thread-context

https://jakarta.ee/specifications/concurrency/3.0/jakarta-concurrency-spec-3.0.html#container-thread-context
https://jakarta.ee/specifications/concurrency/3.0/jakarta-concurrency-spec-3.0.html#container-thread-context

Jakarta Concurrency: All You Need to Know

3

Managed Executor Service
ManagedExecutorService (or MES) is the key component, allowing parallel execution with the
context. This example runs BackService.longJob()method in a new thread, sharing context,
including security:

@Path("jobs")

public class JobsResource {

 @Resource

 private ManagedExecutorService managedExecutor;

 @EJB

 private BackService backService;

 @GET

 @Path("longJob")

 public String longJob() {

 managedExecutor.submit(() -> {

 backService.longJob();

 });

 return "Job Submitted";

 }

}

A similar service is ManagedScheduledExecutorService, allowing scheduling repeating tasks.

Managed Thread Factory
ManagedThreadFactory is useful for third party libraries, which are creating threads but are not
part of Jakarta EE. They usually allow you to pass ThreadFactory as a parameter.

It can also be used for more explicit work with threads.

Context Service
When a third party library creates threads, but does not accept ThreadFactory as a parameter, it
is necessary to wrap the Runnable using the ContextService. It creates a proxy, which sets the
correct context before the code is executed.

Jakarta Concurrency: All You Need to Know

4

Resource Configuration
All resources (ManagedExecutorService, ManagedThreadFactory, ContextService) can
be configured in xml accompanying the application or by the application server.

<managed-executor>

 <name>java:app/concurrent/myExecutor</name>

 <max-async>3</max-async>

</managed-executor>

What is New in Jakarta EE 10 / Concurrency 3.0?
@Asynchronous

One of the most useful new features is the annotation @Asynchronous, which can be now used on
a method of a POJO class or on a class itself.

With @Asynchronous, the previous example can be simplified:

@Path("jobs")

public class JobsResource {

 @EJB

 private BackService backService;

 @GET

 @Path("longJob")

 public String longJob() {

 backService.longJob();

 return "Job Submitted";

 }

 }

In the definition of the BackService, the asynchronous method must return Asynchronous.
Result:

public class BackService {

 @Asynchronous

 public CompletableFuture<Result> longJob() {

 Result result = processLongJob();

 return Asynchronous.Result.complete(result);

 }

}

Jakarta Concurrency: All You Need to Know

5

The asynchronous methods must return type CompletableFuture<> and end with return
Asynchronous.Result.complete(result);

Definition of Resources by Annotation
So far, all resources like thread pools or managed executor services (other than the default ones)
need to be defined on the server prior to deployment. This changes with the new annotation, allow-
ing us to define these resources in the code. They are then created dynamically during deployment.

Let us configure the behavior of @Asynchronous by ManagedExecutorService with up to three
threads and name myExecutor. All methods in this case share the same asynchronous behavior:

@ManagedExecutorDefinition(name = "java:app/concurrent/myExecutor", maxAsync =

3)

@Asynchronous (executor = "java:app/concurrent/myExecutor")

public class BackService {

The same configuration is available for ManagedThreadFactory and ContextService.

Adding Context to java.util.concurrent
The ForkJoin framework became popular with the usage of Java streams and CompletableFuture.
Concurrency 3.0 adds support for it, ManagedThreadFactory extends ThreadFactory,
ForkJoinWorkerThreadFactory and can be used for streams. The example executes the map in par-
allel, all thread with the Jakarta EE context:

@Resource

ManagedThreadFactory threadFactory;

ForkJoinPool fj = new ForkJoinPool(4, threadFactory, null, false);

fj.submit(() -> {

 return Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9)

 .parallelStream()

 .map(...)

Support for CompletableFuture is similarly seamless. All the methods get the context and are
executed synchronously or asynchronously as required.

https://github.com/jakartaee/concurrency/blob/18144d3d877c592634d34e9668dfda35d8f33089/tck/src/main/java/ee/jakarta/tck/concurrent/spec/ManagedThreadFactory/resourcedef/ManagedThreadFactoryDefinitionServlet.java#L188

Jakarta Concurrency: All You Need to Know

6

backService.longJob()

 .thenApply(method1())

 .thenApplyAsync(method2())

 .thenApply(method3())

 .thenApplyAsync(method4())

 .get();

Thread Context Providers
Thread context providers solve the problem of sharing data between threads. It offers a well-defined
way to pass data from the calling thread to the new one and back. More information can be found
in the Concurrency documentation.

Top Tips

It is easy to start with Concurrency in Jakarta EE. If you have a code, which can benefit from parallel
processing, start with injecting ManagedThreadFactory, and start parallelStream()!

If you are tired of configuring your own ManagedExecutorService or you don’t want to use it at
all, it is time to configure it by the annotation and enjoy the power of multiple threads.

And if you missed using asynchronous CompletableFuture, because it was not executed in the same
JPA transaction, now it is supported.

Payara has a set of examples in Payara samples/concurrency.

Many advanced examples can be found in the Concurrency TCK, they work in any compatible imple-
mentation including Payara Platform 6 Community.

Get Started with Jakarta Concurrency 3.0 and Payara Platform
Payara Platform is an innovative and supported application server, ideal to facilitate and enhance
your Jakarta EE and MicroProfile projects.

Payara Platform 6 Community is the latest major release of the Platform, and is officially compatible
with Jakarta EE 10. This means you can try out Jakarta Concurrency 3.0 immediately by downloading
Payara Platform 6 Community here. This is our product for learning and innovation, whilst Payara
Server Enterprise is designed for mission-critical projects. Payara Platform 6 Enterprise will have

https://jakarta.ee/specifications/concurrency/3.0/jakarta-concurrency-spec-3.0.html#thread-context-providers
https://github.com/payara/Payara/tree/Payara6/appserver/tests/payara-samples/samples/concurrency
https://github.com/jakartaee/concurrency/tree/master/tck
https://www.payara.fish/downloads/payara-platform-community-edition/
https://www.payara.fish/products/payara-server/
https://www.payara.fish/products/payara-server/
https://blog.payara.fish/payara-community-vs-payara-enterprise

Jakarta Concurrency: All You Need to Know

7

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

Payara Services Ltd 2022 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

tooling to support migrating applications and Payara domains from Jakarta EE 8 to Jakarta EE 10,
and is coming very soon. Request Payara Server Enterprise here.

Further Reading

Jakarta EE 10: What Decision
Makers Need to Know

Jakarta EE CDI Fact Sheet Dismiss the Myths: Get to know
Jakarta EE (Java EE) eBook

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/resource/jakarta-ee-10-what-you-need-to-know/
https://www.payara.fish/resource/jakarta-ee-10-what-you-need-to-know/
https://www.payara.fish/resource/jakarta-ee-cdi-fact-sheet/
file:/C:\Users\PriyaKhaira-Hanks\Documents\Press%20releases%20and%20copy\Dismiss%20the%20Myths:%20Get%20to%20know%20Jakarta%20EE%20%28Java%20EE%29
file:/C:\Users\PriyaKhaira-Hanks\Documents\Press%20releases%20and%20copy\Dismiss%20the%20Myths:%20Get%20to%20know%20Jakarta%20EE%20%28Java%20EE%29

	Introduction
	Why Do We Need Jakarta Concurrency?
	What is the Advantage Compared to Java SE Threads?

	What are the Main Components?
	Managed Executor Service
	Managed Thread Factory
	Context Service
	Resource Configuration

	What is New in Jakarta EE 10 / Concurrency 3.0?
	@Asynchronous
	Definition of Resources by Annotation
	Adding Context to java.util.concurrent
	Thread Context Providers

	Top Tips
	Get Started with Jakarta Concurrency 3.0 and Payara Platform
	Further Reading

