
How to Use the Payara
Server Implementation of
the MicroProfile Health API

User G
uide

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible.

How to Use the Payara Server Implementation of the MicroProfile Health API

Contents

Introduction 1

What Do I Need to Use This Guide?		 1

What is MicroProfile?	 2

Getting Started with MicroProfile 3

Health vs Metrics API 3

Health API in Action 4

@Liveness check 5

@Readiness check 9

Compose health checks 11

@Health 13

Health check aggregation 14

Health Check Resource Paths 18

Health Check and Security 18

Health Check and CDI 18

Custom Health Endpoint 21

Conclusion	 22

How to Use the Payara Server Implementation of the MicroProfile Health API

1

Introduction

The goal of this guide is to help you as a Java developer make the most of the MicroProfile Metrics
API using the Payara Server Platform. The guide starts by looking at what MicroProfile is, the indi-
vidual APIs that make up MicroProfile and finally takes a deeper look at the Health API. By the end
of this guide, you will be able to integrate MicroProfile into your application and learn how to build
reliable and well functioning applications on Payara Server.

What Do I Need to Use This Guide?

You will need a copy of the latest Payara Server full stream distribution to follow along this guide.
The sample code is built using Apache Maven and as such, any IDE that supports Maven is good
enough. You should also have a minimum of Java SE 8 installed on your computer.

You can also follow along with the information in this guide with our video demo:



https://microprofile.io/
https://www.payara.fish/
https://www.payara.fish/software/downloads/
https://youtu.be/roz8ucFP1i8
https://youtu.be/roz8ucFP1i8

How to Use the Payara Server Implementation of the MicroProfile Health API

2

What is MicroProfile?

MicroProfile is a community driven initiative that is a collection of abstract specs that form a complete
solution to developing cloud native, Java enterprise microservices. The goal is to create a set of APIs
that abstracts you from their implementations so that you can create highly portable microservices
across vendors.

The current release is version 3.3 which is an incremental release that includes an update to
MicroProfile Config 1.4, MicroProfile Fault Tolerance 2.1, MicroProfile Health 2.2, MicroProfile Metrics
2.3, and MicroProfile Rest Client 1.4. Like its previous version, MicroProfile 3.3 continues to align itself
with Java EE 8 as the foundational programming model for the development of Java microservices
and consists of 12 different specifications as shown below.

As abstract specifications, the various implementations are free to implement the base specs and
add custom features on top. Payara Server is one of the popular implementations of the MicroProfile
spec and adds quite a number of custom features on top of the base specs. This guide will walk you
through the Payara Server implementation of the MicroProfile Health API. By the end of this guide,
you would have learned how to integrate the Health API into your applications to aid in running in
automated cluster management cloud environments.

https://github.com/eclipse/microprofile

How to Use the Payara Server Implementation of the MicroProfile Health API

3

Getting Started with MicroProfile

To get started with the MicroProfile API, you need to include it as a dependency in your project as
shown below.

With the MicroProfile API dependency in place, you have access to all the APIs of the project. In our
case, the Payara Server will provide the implementation for us.

MicroProfile Health - What is it?
The MicroProfile Health API is an API that lets your applications answer two questions related to
their health and readiness to serve requests -

1.	 Are you live?
2.	 Are you ready to serve requests?

The objective of the Health API is to automate application response to third party queries with
regards to the above questions. A typical example of such use case is when your application runs in
a Kubernetes managed cluster. The kubelet will send liveness and readiness probes to your appli-
cation in a container to check if it’s live and/or ready to accept requests.

Health vs Metrics API
If you have heard of the MicroProfile Metrics API, you might be wondering what the difference is
between it and the Health API. The Metrics API helps you determine to what extent a given appli-
cation is working correctly, or wrongly. For example, you could have a method that returns the list of

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://www.payara.fish/page/how-to-use-eclipse-microprofile-fault-tolerance-api-to-build-cloud-native-applications-on-payara-platform/

How to Use the Payara Server Implementation of the MicroProfile Health API

4

countries on a given continent. The Metrics API helps you determine - in detail - how that method is
performing with metrics like how long it takes to execute, what the median runtime is among other
examples.

The Health API on the other hand, is designed primarily for machine to machine communication.
It helps your application answer automated queries from cluster management systems that need
to know whether your application is alive and ready to service requests. It lets your application
give binary answers of yes or no to automated probes in the form of UP or Down as shown in the
image below.

MicroProfile Health API in Action
The MicroProfile Health API for you as a developer consists of three annotations (one of which
is deprecated), a HealthCheck interface, and a HealthCheckResponseBuilder for building
HealthCheckResponse objects. The annotations are

•	 @Readiness
•	 @Liveness
•	 @Health

The @Readiness annotation is used to test for the readiness of your application to service requests.
The @Liveness is used to check if your application is up or down. The @Health annotation is dep-
recated and is only kept for backwards compatibility. You should not use it in new MicroProfile
applications. It used to serve the purposes of the @Liveness and @Readiness annotations. All the
annotations are CDI qualifiers.

You might be wondering what the technical differences are between the @Liveness and @Readiness
annotations. According to the Health Spec, the difference between them is only semantic. This means
the same health procedure can be annotated with both annotations.

How to Use the Payara Server Implementation of the MicroProfile Health API

5

To implement health checking in your application you

•	 Implement the HealthCheck interface
•	 Override the call() method to return a HealthCheckResponse object
•	 Annotate the class with either @Readiness or @Liveness or both.

@Liveness check

The image below shows our first implementation of a liveness health check.

The code snippet above shows a LivenessHealthChecker class that implements HealthCheck on line
3. This class is annotated @Liveness on line 1 and @ApplicationScoped on line 2. MicroProfile Health
is integrated with the CDI API so we can use the functionalities of CDI alongside Health. We declare
this class as an application scoped singleton. The CDI runtime will create a single instance of this
class the first time it is requested and only destroyed when the application shuts down.

On line 4, we declare a variable time of type String. Line 7 declares a private void method init() in
which the value of variable time is set to the string representation of the LocalDateTime at the time
this method is invoked. The init() is annotated @PostConstruct to tell the CDI runtime to automati-
cally invoke this method whenever this class is constructed and all fields have been initialized. The
goal of this method is to store the time this class is created to act as the time the application went

How to Use the Payara Server Implementation of the MicroProfile Health API

6

live. Line 11 implements the call() method of the HealthCheck interface. In this method we use the
HealthCheckResponseBuilder to build a HealthCheckResponse object.

The two most important parts of the HealthCheck response object are the name and the up() method.
The name sets the name of this particular health procedure, and the up() method sets the state of
the HealthCheck response to UP meaning the application is live.

With our first health check in place, let us make an invocation to check on it.

Line 1 of the above image makes an HTTP GET invocation to the endpoint http://localhost:8080/
health/live. This endpoint is the default resource for checking the liveness of a MicroProfile

How to Use the Payara Server Implementation of the MicroProfile Health API

7

application. Line 3 shows the start of the response returned from the server. It shows an HTTP status
code 200, implying a “YES” to the question “Are you live?”

Line 5 shows the content return of the response as JSON. You should note that in the invocation to
the resource endpoint on line 1, we did not explicitly specify the preferred response type. We got
a JSON in return because the Health spec requires implementations to return data in JSON. Line
9-21shows a JSON object that contains an array of HealthCheckResponse objects keyed to “checks.”
Line 12-17 shows the HealthCheckResponse we constructed using the HealthCheckResponseBuilder.
Line 16 for instance, shows the name we assigned to the HealthCheckResponse object we created
- “Liveness check.”

Line 17 shows the status of the HealthCheck procedure as UP. This was set by our us when we invoked
the up() on when building the HealthCheckResponse object. Setting the HealthCheckResponse state
to up is also what set the HTTP status to 200 OK. Line 20 shows the overall status of the health
checker as UP.

In the sample code shown so far, we just returned a HealthCheckResponse object whose state we
manually set to UP. This will always cause an HTTP status 200 to be returned to any probing con-
sumer. In your own application however, you would probably run some logic to verify your application
is indeed up. An example could be making some invocation to a database and verifying the result to
ascertain that your application is truly live.

The next code snippet shows a situation where we return a HealthCheckResponse object with status
DOWN.

The above code snippet shows a call() method implementation that returns a HealthCheckResponse
object whose state is set to DOWN with the invocation of the DOWN method on the response object.
A request to the resource method http://localhost:8080/health/live shows the following results

How to Use the Payara Server Implementation of the MicroProfile Health API

8

Line 1 of the above image shows a HTTP GET request to the health /health/live resource. This time
around, the HTTP response code returned is 503, Service Unavailable. Line 21 also shows the status
as DOWN. 503 is returned because we set the HealthCheckResponse object returned to a state of
DOWN. The Health runtime uses the state of the returned health check object to set the HTTP code
which will be used by automated cluster management systems like Kubernetes to decide whether
to discard a given node in a cluster or not.

How to Use the Payara Server Implementation of the MicroProfile Health API

9

@Readiness check

The process of creating a readiness health procedure is identical to that of creating a liveness pro-
cedure as shown below.

Line 3 of the above code snippet creates a ReadinessHealthChecker that implements the HealthCheck
interface. This class is identical to the LivenessHealthChecker in that they are both application scoped
singletons as declared on line 2 in above code snippet. Line 1 however, annotates this class with @
Readiness annotation from the Health API.

Line 6 implements the call() method of the HealthCheck interface, returning a HealthCheckResponse
object constructed in its body. Except the name and custom payload of the response object, this
health procedure is identical to our first @Liveness implementation. This is because the only dis-
tinction between @Liveness and @Readiness is just semantic. However, in practice they are both
the same.

An invocation to http://localhost:8080/health/ready returns the following data

How to Use the Payara Server Implementation of the MicroProfile Health API

10

Line 1 makes invocation to the /health/ready endpoint and the server returns an HTTP 200 code on
line 3. As you can see, the only difference between this response and that of the @Liveness health
check is in the endpoint that is invoked. @Readiness health check is hosted at the /health/ready
endpoint and @Liveness at the /health/live endpoint. The structure of the responses is identical.

Just as we were able to have the Health runtime return a 503 error by setting the state of the
HealthCheckResponse object to DOWN, we can do the same for the readiness check. Again, in your
application, you will implement some kind of logic to determine the kind of response to return in
your HealthCheck implementations.

How to Use the Payara Server Implementation of the MicroProfile Health API

11

Compose health checks

So far we have looked at the @Liveness and @Readiness health check annotations. However, you
can use both annotations on one HealthCheck implementation. In such a case, the same health
check will be used to service both a /health/ready and /health/live requests. The code below shows
a HealthCheck implementation for both live and readiness checks in one class.

Lines 1 and 2 annotate class CompositeHealthCheck with @Liveness and @Readiness, respectively.
This class implements the HealthCheck interface and overrides the call(), returning a
HealthCheckResponse object. Note that this HealthCheck implementation is identical to all that we
have seen so far.

We can make HTTP GET requests to /health/ready and /health/live resources and the Health runt-
ime will use the same health procedure to service the request. For example, a @Readiness request
returns the following response

How to Use the Payara Server Implementation of the MicroProfile Health API

12

Line 1 makes the /health/ready request to our MicroProfile application. The response so far is iden-
tical to what we have seen so far. Line 3 shows an HTTP status code of 200 and line 21 shows the
status of UP for this health procedure. Now let us make a request to health/live.

How to Use the Payara Server Implementation of the MicroProfile Health API

13

Line 1 of the above image shows a request to the /health/live endpoint. Similar to the previous
response, we get an HTTP 200 status code. However, the body of the response only shows the
mandatory status, in this case UP. This shows that when you use composite health checks, the
request for which the custom data added to the HealthCheckResponse object is returned is depend-
ent upon the implementation, because the spec is silent on it. In this case, the Payara Server returns
the data for a /health/ready request and only the status for a /health/live request.

@Health

The @Health annotation is a health check annotation that has been deprecated since Version 2.0
of the Health API. It is available for backward compatibility reasons. You should not use it in your
new MicroProfile projects. You might see it in older MicroProfile code in the wild. It functions similar
to what we have seen so far. The API creators thought it is better to be more explicit and clearer

https://github.com/eclipse/microprofile-health/releases/tag/2.0

How to Use the Payara Server Implementation of the MicroProfile Health API

14

with the intent of the checks, among other reasons, and thus the creation of the @Liveness and @
Readiness annotations to replace @Health.

Health check aggregation

So far you have seen different permutations of the use of the Health API. The question you may be
asking is what happens if you have different procedures for liveness and readiness checks? Such as
the code snippets below?

The above image shows our liveness check, as discussed in a previous section.

How to Use the Payara Server Implementation of the MicroProfile Health API

15

The above code snippet shows a readiness health check procedure. This is the same code we dis-
cussed earlier. The only difference now is that we have a separate health procedure for liveness and
another for a readiness check. So how do you make one request to get a response from both health
procedures? Instead of making separate requests to /health/live and /health/ready?

To answer your questions, we make a HTTP GET to the base /health resource as shown below.

How to Use the Payara Server Implementation of the MicroProfile Health API

16

How to Use the Payara Server Implementation of the MicroProfile Health API

17

Line 1 of the above snippet shows a request to the /health base path. The result is a HTTP 200
status and an overall health status of UP as shown on line 32. The main point of note in the above
response is that the HealthCheckResponse objects of both health procedures have been aggregated
into 1 response. Line 17 shows the status of the readiness check as UP and line 25 shows that of the
liveness check as UP. These give an overall health status of UP. What do you think the overall status
would be if 1 of the health procedures had returned a status of down? Let us see a /health request
to our application when the readiness procedure returns a status of DOWN while the liveness status
returns a status of UP.

How to Use the Payara Server Implementation of the MicroProfile Health API

18

The above request to /health returns an HTTP status code of 503, with an overall health status of
DOWN on line 29. Line 26 shows the status of the readiness check as DOWN. In aggregation, the
Health runtime returned DOWN for the overall status. This shows that the overall status is only set
to UP when all the health procedures are healthy. Also note that the spec does not declare any spe-
cific order in which multiple health procedures are to be invoked. In our case, the readiness or the
liveness procedures can be invoked in any order by the runtime.

It makes sense to set the overall status to UP only when every health procedure returns UP because
the goal of the Health API is to enable machine to machine probing. The cluster management system
will use the result to make decisions. Imagine if the overall status in the above response had been
UP even though the readiness health procedure had it said it was not ready. This would result in the
cluster manager routing requests to our application when it had clearly stated that it was not ready
to service requests.

Health Check Resource Paths

All through this guide, you have seen requests to /health/ready, /health/live and /health. You might
have noted that the MicroProfile Health API endpoint is located on the root/base path of the server,
that is http://localhost:8080/health. Note that there is no context path after the domain (and port).
The MicroProfile Health runtime is hosted on the default “health” path at the base of the server.

What this implies is that you can have more than one application hosted on the server, each with
their separate health check procedure. This is why the name of the HealthCheckResponse object is
mandatory. In complex environments, the cluster manager can be configured to drill down to specific
health response objects for their status.

Health Check and Security

So far we have seen health checks to unsecured endpoints. The MicroProfile Health API can be con-
figured to be accessible only to authenticated clients. It can be further configured to allow access
to clients with specific roles.

Health Check and CDI

So far we have seen the implementation of health procedures in individual classes. However, you
can also simplify health procedures by the use of the CDI producer mechanism because health
procedures are CDI beans. Because the Health API is integrated with CDI, the runtime would use
your custom health producers to service requests. Let us rewrite our readiness and liveness through
CDI producers.

How to Use the Payara Server Implementation of the MicroProfile Health API

19

Line 2 of the above code snippet declares a CDI @ApplicationScoped bean HealthCheckProducer.
Line 4 uses the CDI @Produces an annotation to declare method (line 6) livenessCheck() as a CDI
producer. The return type of the method is a HealthCheck implementation. Because HealthCheck
is a functional interface, line 7 uses a lambda expression to construct and return an instance of the
HealthCheckResponse object. Line 5 marks method livesnessCheck as a liveness check. Except for
the method names and health check annotation (line 12), the readinessCheck() method declared
on line 13 is identical to the liveness check.

An HTTP invocation to the base /health resource returns the following response.

How to Use the Payara Server Implementation of the MicroProfile Health API

20

Line 1 makes an HTTP request to http http://localhost:8080/health. The server returns with a
response 200 response code on line 3 and overall health status of UP on line 22. The interesting
part of this response is that it is from our earlier CDI produced HealthChecks. Line 13 shows the
response from the readiness check and line 18 shows the response from the liveness check. Thanks
to the tight integration between CDI and the Health API, we can use the CDI producer construct to
simplify our code and gain the same result.

How to Use the Payara Server Implementation of the MicroProfile Health API

21

Custom Health Endpoint

The Payara Server full allows you to customize the /health endpoint for health checks. It also allows
you to set whether health check endpoints are secured and which roles can access health checks.
You can set these options through the server admin interface or through the use of the Asadmin
CLI as shown below.

Summary
In this guide, we have looked at how you can use the MicroProfile Health API to enable your appli-
cation to respond to probes about its health. You started by taking a look at the difference between
the Health API and the Metrics API.

You then started by taking a look at implementing a @Readiness health procedure, followed by @
Liveness. You saw how you can combine both checks to create composite health checks. You also
learned that @Health annotation is deprecated in factor of the more semantic @Liveness and @
Readiness health checks.

You then learned to get a health check response for all health check procedures by making a request
to the /health endpoint. Then you learned how you can use the CDI produce mechanism to cre-
ate compact health procedures. Finally you learned how you can customize certain aspects of the
MicroProfile Health API through the Payara Server.

https://www.payara.fish/products/downloads/all-downloads/
https://docs.payara.fish/documentation/payara-micro/asadmin.html
https://docs.payara.fish/documentation/payara-micro/asadmin.html

How to Use the Payara Server Implementation of the MicroProfile Health API

22

sales@payara.fish +44 207 754 0481 www.payara.fish

  

Payara Services Ltd 2021 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Conclusion

The MicroProfile Health API is a powerful and easy to use API designed to help your applications be
able to respond to automated health probes. Developing cloud native enterprise Java applications
requires that your application plays nicely with cluster management systems like Kubernetes. The
MicroProfile Health API helps achieve that objective.

With the Payara Server Platform fully implementing the latest MicroProfile specification, you are
assured of a powerful platform on which to run your mission critical enterprise Java workload.

Should you need further support or info about using or transitioning your enterprise Java workload to
the Payara Server Platform, please don’t hesitate to get in touch with us. You can always just say hi to
us. We would love to hear from you. You can also keep in touch with us on our social media platforms.

   youtube-square

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.facebook.com/PayaraFish
https://twitter.com/Payara_Fish
https://www.linkedin.com/company/payara/
https://www.youtube.com/user/payarafish

	Introduction
	What Do I Need to Use This Guide?
	
	What is MicroProfile?
	Getting Started with MicroProfile
	Health vs Metrics API
	Health API in Action
	@Liveness check
	@Readiness check
	Compose health checks
	@Health
	Health check aggregation
	Health Check Resource Paths
	Health Check and Security
	Health Check and CDI
	Custom Health Endpoint

	Conclusion

