
How to Future-Proof 
Your Java Stack 
Migration Strategies for 
JBoss EAP Users 

Power Up Your Enterprise Java User Guide



How to Future-Proof Your Java Stack: Migration Strategies for JBoss EAP Users 

Guide Updated: December 2025Contents

The Support Lifecycle Reality Check 1

The Real Cost of Staying Put 2

Your Attack Surface Is Growing Daily 2

Performance Is Suffering From Architectural Decay 2

Compliance Violations Are Guaranteed 3

You're Stranded on a Technical Island 3

Three Migration Pathways Forward 4

Pathway 1: Strategic Migration to Payara Platform 4

Pathway 2: Incremental Upgrade Within Red Hat Ecosystem 5

Pathway 3: Cloud-Native Re-architecture 6

Why Payara Makes Sense for JBoss EAP Users 6

Transform Debt Into Opportunity 7

Need Immediate Protection? Payara Lifetime Support Bridges the Gap	 7



How to Future-Proof Your Java Stack: Migration Strategies for JBoss EAP Users 

1

For decades, Red Hat JBoss Enterprise Application Platform (EAP) has served as a cornerstone of 
enterprise Java ecosystems, providing a stable, feature-rich and commercially supported runtime for 
mission-critical applications. Its reputation for reliability made it a prudent choice for organizations 
building highly transactional, web-scale systems. This very stability, however, has created a signifi-
cant paradox. The platforms that were once bastions of enterprise security and performance have, 
for many organizations, become sources of profound inertia. This inertia transforms a once-valuable 
asset into a source of escalating technical debt and critical business vulnerabilities, particularly for 
those still operating on older, unsupported versions.

The Support Lifecycle Reality Check

The JBoss EAP support lifecycle isn't arbitrary. It's a structured policy designed to focus engineering 
resources on modern, secure platforms. Understanding these timelines is essential because ignoring 
them introduces significant, unmanaged risk.

Red Hat's support phases each represent a material degradation in coverage. Full Support provides 
comprehensive services including bug fixes and security patches for all severity levels. Maintenance 
Support narrows this considerably: only patches for critical issues, no new features. Then comes 
Extended Life Support (ELS), which sounds reassuring but operates in two phases that few organ-
izations understand correctly.

ELS-1 provides patches only for vulnerabilities Red Hat deems "critical." Moderate and low-severity 
issues remain unpatched. ELS-2 offers virtually nothing: just migration guidance while your platform 
accumulates vulnerabilities. You're paying premium prices to get advice about leaving.

Here's where major JBoss EAP versions stand today:

JBoss EAP 
Version

Full Support 
End

Maintenance 
Support End

ELS-1 End Final End of Life

5.x Nov 30, 2013 Nov 30, 2016 Nov 30, 2019 ELS-2 Not Offered
6.x Jun 30, 2016 Jun 30, 2019 Jun 30, 2022 ELS-2 Not Offered
7.x Dec 31, 2023 Jun 30, 2025 Oct 31, 2027 Oct 31, 2030
8.x Feb 05, 2028 Feb 05, 2031 Feb 05, 2033 ELS-2 Not Offered

JBoss EAP versions 5 and 6 are long past any form of support. Any organization still running these 
versions is operating with extreme risk. For JBoss EAP 7 users, maintenance support concluded 
in mid-2025, and the final deadline for security patches under ELS-1 is October 31, 2027. Waiting 
until the final months forces you into a high-pressure, reactive migration of an already insecure 
platform. These emergency projects are invariably more expensive, disruptive, and prone to failure 
than planned modernization efforts.



How to Future-Proof Your Java Stack: Migration Strategies for JBoss EAP Users 

2

The Real Cost of Staying Put

The decision to defer migration introduces a cascade of interconnected risks that permeate every 
layer of your technology stack and business operations. These aren't theoretical concerns. They're 
tangible vulnerabilities that grow more severe over time.

Your Attack Surface Is Growing Daily
Once a product exits its support lifecycle, the vendor stops issuing security patches. Vulnerability 
discovery doesn't stop. This creates a one-way accumulation of risk where your attack surface 
expands daily with no corresponding mitigation.

The threats are diverse and severe. Remote code execution vulnerabilities in older JBoss versions, 
particularly through deserialization flaws, allow attackers to execute arbitrary commands and com-
pletely compromise systems. Path traversal issues let attackers access privileged files: configuration 
files, database credentials, private keys. Denial of service flaws can be exploited to exhaust resources 
and crash applications. Cross-site scripting vulnerabilities in administrative components enable 
session hijacking and user impersonation.

Log4Shell serves as the perfect case study. When this critical vulnerability in Apache Log4j surfaced, 
Red Hat promptly patched all supported EAP versions. Organizations on end-of-life (EOL) versions 
had no official patch. They scrambled with complex, incomplete workarounds: modifying runtime 
configurations, manually replacing libraries. These were risky procedures that could break function-
ality. This single event illustrated the untenable position of operating end-of-support (OES) or EOL 
software in a world of zero-day threats.

Performance Is Suffering From Architectural Decay
Older JBoss EAP versions impose significant performance penalties due to dated architecture. The 
evolution from EAP 5 and 6 to EAP 7 and beyond wasn't incremental. It was a fundamental re-ar-
chitecture that yielded substantial gains in efficiency, startup time, and scalability.

Early versions were built on a monolithic architecture with complex, hierarchical classloaders and 
sprawling configuration spread across dozens of XML files. The server had to load and initialize all 
subsystems at startup, whether applications needed them or not. The result? Notoriously slow boot 
times, large memory footprints, and configurations that were difficult to manage and troubleshoot.

Modern application servers have moved beyond these limitations. Modular class loading provides 
better isolation and dependency control. Centralized configuration consolidates those myriad XML 
files into unified formats. Lazy loading means subsystems load on-demand, only when applications 
require them. This dramatically reduces startup times and lowers baseline memory consumption. 
Modern web servers like Undertow offer non-blocking I/O designed specifically for high-throughput, 
high-concurrency environments.



How to Future-Proof Your Java Stack: Migration Strategies for JBoss EAP Users 

3

Organizations clinging to older versions actively forego these architectural benefits. They battle 
OutOfMemoryError exceptions due to less efficient garbage collection in older JVMs, requiring con-
stant reactive tuning. Slow startup times hinder agility, lengthening development cycles and delaying 
recovery after outages. Most importantly, they're running on web containers that are architecturally 
inferior for handling modern, high-traffic applications.

Compliance Violations Are Guaranteed
For any organization handling sensitive data (particularly payment card information), running EOS 
or EOL software isn't just a technical risk. It's a direct compliance violation.

PCI DSS Requirements 6.1 and 6.2 explicitly mandate that organizations establish processes to 
identify security vulnerabilities and ensure all system components are protected from known vul-
nerabilities by installing applicable vendor-supplied security patches. By definition, an EOL product 
for which the vendor no longer supplies patches cannot meet this requirement.

While PCI DSS allows "compensating controls" in certain circumstances, the PCI Security Standards 
Council has stated these should be considered "temporary solutions only" and that organizations 
must have an "active migration plan" to upgrade to supported versions. Implementing effective com-
pensating controls (dedicated network segmentation, advanced host-based intrusion prevention, 
application whitelisting, intensive real-time monitoring) is often far more complex and expensive 
than performing the necessary migration.

The situation becomes even clearer for internet-facing systems. A system running an unsupported 
platform will be flagged as an automatic failure during required scans by Approved Scanning Vendors. 
This makes achieving and maintaining PCI DSS compliance practically impossible.

You're Stranded on a Technical Island
Perhaps the most insidious long-term cost is the gradual descent into technical obsolescence. An 
outdated application platform acts as an anchor, preventing the entire development ecosystem from 
moving forward and adopting modern tools, practices, and architectures.

JBoss EAP 6, for example, is only officially supported on Java 8, with no support for modern Long-
Term Support releases like Java 11, 17, or 21. This forces development teams to work with an aging 
version of the Java language, depriving them of significant language features, performance improve-
ments, and security enhancements built into newer JDKs. This also creates a secondary security 
risk: the underlying JDK itself will eventually become end-of-life and stop receiving security updates.

Legacy platforms were designed for a pre-cloud, pre-container world of vertically scaled, manually 
configured servers. Attempting to force-fit them into modern infrastructure paradigms is ineffi-
cient and counterproductive. The resulting deployments are often economically inefficient on cloud 
platforms optimized for stateless, horizontally scalable applications that can take advantage of 
auto-scaling and pay-as-you-go pricing models.



How to Future-Proof Your Java Stack: Migration Strategies for JBoss EAP Users 

4

These risk categories feed into one another, creating a self-reinforcing cycle of decay. Architectural 
limitations make platforms harder to patch and secure. Security vulnerabilities lead directly to com-
pliance failures. The inability to upgrade prevents adoption of modern patterns that could help miti-
gate security and performance issues. The total risk grows exponentially the longer you wait to act.

Three Migration Pathways Forward

The optimal migration strategy depends on your specific business context, technical capabilities, and 
long-term architectural vision. Here are three distinct pathways representing different approaches 
to modernization.

Pathway 1: Strategic Migration to Payara Platform
For organizations seeking a modern, fully supported Jakarta EE platform without the complexity 
of complete re-architecture, migrating to Payara Platform Enterprise offers the most direct path to 
security and compliance.

Payara Platform Enterprise is a production-ready application server derived from GlassFish, 
enhanced with enterprise features, performance optimizations, and full commercial support. It's 
designed specifically for organizations that need the stability of Jakarta EE with the agility of modern 
cloud infrastructure.

For JBoss EAP 7 users, migrating to Payara Platform Enterprise 5 offers immediate benefits with 
minimal disruption. Both platforms are based on Java EE 8, which means your applications can 
continue using the javax.* namespace without code changes. You avoid the painful javax to 
jakarta namespace migration entirely while immediately regaining full commercial support including 
regular security patches, bug fixes, and access to enterprise-grade tooling. This isn't a stopgap. It's 
a strategic decision to move to a platform that's actively maintained, fully compliant, and designed 
for modern infrastructure.

For organizations ready to adopt Jakarta EE 10, Payara Platform Enterprise 6 provides a clear migra-
tion path with comprehensive tooling support. The platform includes Docker images for both Full 
Profile and Web Profile deployments, native Kubernetes support, and integration with modern mon-
itoring and observability tools. Unlike staying within the Red Hat ecosystem, you're not locked into 
a single vendor's timeline or pricing model.



How to Future-Proof Your Java Stack: Migration Strategies for JBoss EAP Users 

5

Payara Platform Enterprise also offers features that JBoss EAP lacks or charges extra for:

• Advanced health checking and notification systems for proactive monitoring
•	 Request tracing for debugging production issues
•	 Payara Micro for microservices architectures
•	 Extensive Docker and Kubernetes support out of the box
• Flexible deployment options from traditional servers to cloud-native containers

Migration tooling exists to help assess and execute the transition. The Payara team provides migration 
guides, professional services, and the Payara Accelerator service to support adoption, assessment, 
and reconfiguration work. For organizations with complex infrastructure or limited in-house expertise, 
this professional support significantly reduces migration risk and accelerates time-to-production.

Pathway 2: Incremental Upgrade Within Red Hat Ecosystem
For organizations deeply committed to Red Hat's product portfolio with significant existing invest-
ments, upgrading to JBoss EAP 8 remains an option. However, this path presents substantial chal-
lenges that organizations should carefully weigh.

The primary obstacle is the transition from Java EE to Jakarta EE 10, which requires the name-
space migration from javax.* to jakarta.*. Every Java import, configuration reference, and 
XML descriptor must be refactored. This requires meticulous audit and modification of the entire 
application codebase and deployment descriptors.

Red Hat provides tools to facilitate this process. The Migration Toolkit for Applications scans applica-
tion source code and binaries, generating detailed reports identifying all necessary migration tasks. 
The JBoss Server Migration Tool can read configuration files from older EAP servers and automatically 
migrate settings to the EAP 8 format.

However, this pathway keeps you locked into Red Hat's licensing model and support terms. As 
the lifecycle table shows, even EAP 8 will eventually reach end-of-life, requiring future migrations. 
Organizations should carefully evaluate whether the investment in Red Hat-specific tooling and 
expertise delivers long-term strategic value, or whether migrating to a more flexible platform makes 
better business sense.



How to Future-Proof Your Java Stack: Migration Strategies for JBoss EAP Users 

6

Pathway 3: Cloud-Native Re-architecture
For organizations ready to fundamentally transform their application architecture, decomposing mon-
olithic applications into microservices represents the most forward-looking approach. This pathway 
involves moving beyond traditional application servers entirely, adopting lightweight frameworks 
designed specifically for cloud-native environments.

Frameworks like Quarkus and Spring Boot follow an "embedded server" model, packaging applica-
tion code with only necessary libraries and a minimal embedded web server into a single executable 
artifact. These frameworks are optimized for fast startup times and low memory footprints, making 
them well-suited for containerized and serverless environments.

However, this is a re-architecture project, not a migration. It requires applying domain-driven design 
principles to identify bounded contexts within existing monoliths and incrementally rewriting them as 
independent microservices. There's no automated tool to perform this core domain decomposition. 
It demands significant time, expertise, and organizational commitment.

For most organizations with production JBoss EAP applications, this represents a multi-year transfor-
mation journey rather than a tactical migration. It's a valid long-term vision, but it shouldn't prevent 
you from addressing immediate security and compliance risks. Many successful organizations adopt 
a hybrid approach: migrating existing applications to a modern, supported platform like Payara first, 
then selectively re-architecting high-value components as microservices over time.

Why Payara Makes Sense for JBoss EAP Users

Organizations evaluating migration options often overlook a fundamental question: why stay 
locked into a single vendor's ecosystem when alternatives offer equal or better capabilities with 
more flexibility?

Payara Platform Enterprise provides full Jakarta EE compatibility, enterprise support, modern infra-
structure integration, and competitive pricing without vendor lock-in. You're not betting on a single 
vendor's product roadmap or accepting their licensing terms indefinitely. You're choosing a platform 
backed by a company focused exclusively on application server excellence, not one managing dozens 
of product lines with competing priorities.

For organizations on JBoss EAP 7, the path to Payara Platform Enterprise 5 is particularly compel-
ling. You maintain your existing Java EE 8 codebase, avoid the namespace migration complexity, 
and immediately regain security patch coverage and compliance standing. Your development team 
can continue working in familiar territory while you plan longer-term architectural evolution on your 
timeline, not a vendor's support calendar.

For organizations ready to adopt Jakarta EE 10, Payara Platform Enterprise 6 offers a modern, 
cloud-ready runtime with full Docker and Kubernetes support, advanced monitoring capabilities, 
and flexible deployment models from traditional servers to microservices.



How to Future-Proof Your Java Stack: Migration Strategies for JBoss EAP Users 

7

Transform Debt Into Opportunity

The evidence is conclusive: continuing to operate on end-of-life JBoss EAP versions is unsustainable 
and high-risk. The compounding dangers of an ever-growing unpatched attack surface, degrading 
performance from archaic architectures, guaranteed non-compliance with critical security stand-
ards like PCI DSS, and an innovation bottleneck that prevents adopting modern technologies create 
formidable barriers to business agility and resilience.

However, the necessity of migration shouldn't be viewed solely as a burdensome cost center or 
reactive technical chore. It represents a pivotal strategic opportunity: a chance to pay down years 
of accumulated technical debt, fundamentally modernize the Java application stack, and break free 
from vendor lock-in that constrains future flexibility.

The path forward begins with a clear-eyed assessment. IT leaders must conduct a thorough inven-
tory of the entire JBoss EAP estate, use the end-of-life timelines to triage risk, and initiate a formal 
analysis and planning process. The future viability, security, and performance of the enterprise Java 
portfolio depend on the strategic decisions and actions taken today.

Need Immediate Protection? Payara Lifetime 
Support Bridges the Gap

We understand that not all workloads can be migrated immediately. Complex infrastructure, small 
development teams, mission-critical systems with limited downtime tolerance, and resource con-
straints are real challenges that organizations face.

That's why Payara offers Lifetime Support for Payara Platform Enterprise 4. This isn't about indefi-
nitely postponing necessary modernization. It's about giving you the time and stability you need to 
plan and execute migrations properly, without leaving your systems exposed while you work.

Lifetime Support provides:

• Continued security fixes and critical bug patches through December 2030 (aligned with Java 
8 EOL)

•	 Enterprise-level support for business-critical applications
•	 Time to plan strategic migration to Payara Platform 5 or 6 on your timeline
• Professional services support to guide your modernization journey



How to Future-Proof Your Java Stack: Migration Strategies for JBoss EAP Users 

8

sales@payara.fish UK: +44 800 538 5490 
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2025 All Rights Reserved. Registered in England and Wales; Registration Number 09998946 
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Think of Lifetime Support as your safety net while you build your future. You maintain security and 
compliance standing for systems that can't move immediately, while systematically planning migra-
tions to Payara Platform 5 or 6. This phased approach reduces risk, spreads costs over time, and 
ensures you're never forced into emergency migrations under pressure.

Whether you're currently on JBoss EAP 7 looking for a migration path, on Payara Platform Enterprise 
4 needing continued support, or on Eclipse GlassFish seeking a commercially supported alternative, 
we're here to help you navigate the journey to modern, secure Java infrastructure.

Learn more about Payara Lifetime Support and discover how we can support your migration to Payara 
Platform Enterprise 5 or 6.

Interested in Payara? Book a Free Demo

https://payara.fish/about/contact-us/
https://payara.fish/
https://payara.fish/blog/payara-platform-enterprise-4-lifetime-support-2025/
https://www.payara.fish/page/free-trials/?utm_source=PDF&utm_medium=resource&utm_campaign=payara-resource-PDF-document

	The Support Lifecycle Reality Check
	The Real Cost of Staying Put
	Your Attack Surface Is Growing Daily
	Performance Is Suffering From Architectural Decay
	Compliance Violations Are Guaranteed
	You're Stranded on a Technical Island

	Three Migration Pathways Forward
	Pathway 1: Strategic Migration to Payara Platform
	Pathway 2: Incremental Upgrade Within Red Hat Ecosystem
	Pathway 3: Cloud-Native Re-architecture

	Why Payara Makes Sense for JBoss EAP Users
	Transform Debt Into Opportunity
	Need Immediate Protection? Payara Lifetime Support Bridges the Gap

