
Developer Guide: Storing Files
to AWS S3 from Jakarta EE

Power Up Your Jakarta EE User Guide

Developer Guide: Storing Files to AWS S3 from Jakarta EE

Guide Updated: October 2024Contents

Introduction 	 1

Objectives of this Guide 	 1

Common File Storage Challenges 	 1

Scalability: Handling Growing Storage Needs 	 1

Availability: Ensuring Files are Accessible When Needed 	 2

Durability: Protecting against Data Loss 	 2

Performance: Fast Read and Write Operations 	 2

Cost-effectiveness: Managing Storage Expenses 	 2

Security: Protecting Sensitive Data 	 2

Why Amazon S3?	 3

Considerations for Adopting S3 	 3

The Implementation 	 4

Prerequisites 	 4

Step 1: Set Up AWS Credentials 	 4

Step 2: Add AWS SDK Dependencies 	 4

Step 3: Configure AWS S3 Client 	 5

Step 4: Implement File S3 Service 	 6

Step 5: Use the Upload Service in a JAX-RS Resource 	 7

Your Application In Payara Cloud 	 12

Best Practices for Efficient and Secure S3 File Management 	 13

Secure Credential Management 	 13

Error Handling and Logging 	 13

Large File Uploads 	 13

Caching 	 13

Content-Type Setting 	 14

Versioning 	 14

Access Control 	 14

Encryption 	 14

Monitoring and Alerts 	 14

Cost Optimization 	 14

Conclusions	 15

Developer Guide: Storing Files to AWS S3 from Jakarta EE

1

Introduction

Modern Jakarta EE applications running on Payara Cloud often need to handle file storage for various
purposes, such as user uploads, document management or data backups. As applications scale,
managing file storage can become challenging, especially when dealing with large volumes of data or
high concurrent access. Payara Cloud, the Payara as a Service (PaaS) platform for deploying Jakarta
EE and MicroProfile applications, gives application full access to all cloud services they need. This
includes uploading files to external storage services. This brief developer guide will show you how
to connect to and upload files to Amazon Web Services (AWS) Simple Storage Service from your
Jakarta EE application running on Payara Cloud.

Objectives of this Guide
After reading this guide, you will:

•	 Understand common file storage challenges in enterprise applications
•	 Learn why Amazon S3 is a popular solution for these challenges
•	 Get insight into key considerations when adopting S3 for your Jakarta EE application
•	 Learn how to implement S3 integration in a Jakarta EE application, including:

•	 Setting up AWS credentials
•	 Configuring the S3 client
•	 Implementing file upload functionality
•	 Creating a REST endpoint for file uploads

•	 Learn best practices for using S3 with Jakarta EE applications running on Payara Cloud

Common File Storage Challenges

File storage systems are important to business applications of all sizes, but they also come with their
own set of challenges. From managing the ever-growing volume of data to ensuring its security and
accessibility, file storage can be complex to implement and maintain. Let’s explore some of the most
common application file storage challenges out there.

Scalability: Handling Growing Storage Needs
As businesses generate more data, their storage requirements increase exponentially. File storage
systems need to be able to scale to accommodate this growth without compromizing performance or
requiring extensive refactoring. This often involves being able to add more storage capacity on-the-
fly, or to distribute data across multiple storage nodes.

Developer Guide: Storing Files to AWS S3 from Jakarta EE

2

Availability: Ensuring Files are Accessible When Needed
Data availability is critical for business continuity. File storage systems need to ensure that files are
accessible when needed, even in the face of hardware failures, network outages or other disruptions.
This often involves implementing redundancy mechanisms, such as data replication or distributed
storage, to ensure that multiple copies of data are available in different locations.

Durability: Protecting against Data Loss
Data loss can be catastrophic for businesses. File storage systems need to protect against data
loss due to hardware failures, software errors, or other unforeseen events. This typically involves
implementing data backup and recovery mechanisms, as well as data integrity checks, to ensure
that data remains intact and recoverable.

Performance: Fast Read and Write Operations
File storage systems need to be able to handle high volumes of read and write operations efficiently
to support business applications. This often involves using fast storage media, such as solid-state
drives (SSDs), and optimizing data access patterns to minimize latency.

Cost-effectiveness: Managing Storage Expenses
Storage costs can be a significant expense for businesses. File storage systems need to be cost-ef-
fective to manage storage expenses while still meeting performance and availability requirements.
This often involves using a combination of storage tiers to balance cost and performance, such as
hot storage for frequently accessed data and cold storage for archival data.

Security: Protecting Sensitive Data
File storage systems need to protect sensitive data from unauthorized access, theft or modification.
This typically involves implementing access control mechanisms, encryption and other security
measures to ensure that data remains confidential and secure.

Developer Guide: Storing Files to AWS S3 from Jakarta EE

3

Why Amazon S3?

Amazon Simple Storage Service (S3) is a popular choice for addressing these challenges in Jakarta EE
applications. Built from the ground up with modern application needs in mind, Amazon S3 addresses
these file storage challenges through its features as follows.

•	 Scalability: S3 provides virtually unlimited storage capacity.
•	 Availability: With 99.99% availability, S3 ensures your files are almost always accessible.
•	 Durability: S3 offers 99.999999999% (11 9's) durability, minimizing the risk of data loss.
•	 Performance: S3 provides low-latency access to data, with options for different storage

classes based on access patterns.
•	 Cost-effectiveness: Pay only for what you use, with tiered pricing for larger storage

volumes.
•	 Security: S3 offers hierarchical security features, including encryption at rest and in transit,

access controls and audit logging.

Considerations for Adopting S3
Before adopting S3 storage into your applications however, there are a few considerations worth
keeping in mind, including

•	 Data Classification: Identify which data is suitable for cloud storage and which must
remain on-premises due to regulatory or security requirements.

•	 Access Patterns: Understand how your application will access the stored files. This affects
your choice of S3 storage class and potential use of caching mechanisms.

•	 Compliance: Absolutely make sure S3 usage complies with relevant regulations (e.g.,
GDPR, HIPAA) for your industry and region.

•	 Costs: Analyze the cost implications, including storage, data transfer and API request pric-
ing for expected usage by your application. Be sure to factor in projected usage growth for
the foreseeable future.

•	 Latency: Consider the network latency between your application servers and AWS regions.
•	 Backup and Versioning: Determine your needs for file versioning and backup strategies.
•	 Integration Complexity: Assess the effort required to integrate S3 into your existing appli-

cation architecture. Though it should be fairly straightforward if you are using the standard
Jakarta EE/Java platforms.

•	 Vendor Lock-in: Consider the implications of tying your application to AWS services and
potential migration strategies should the need arise.

Developer Guide: Storing Files to AWS S3 from Jakarta EE

4

The Implementation

Now, let's dive into the technical implementation of integrating S3 with your Jakarta EE application.

Prerequisites
•	 Jakarta EE 10+ application
•	 Payara Cloud account (get a free trial here)
•	 AWS account with S3 access
•	 AWS SDK for Java
•	 Basic familiarity with AWS S3 terminology. This guide assumes working familiarity with

them. If not, please give the S3 getting started guide a read.

Step 1: Set Up AWS Credentials
•	 Create an IAM user with S3 access in your AWS account
•	 Note the Access Key ID and Secret Access Key

Step 2: Add AWS SDK Dependencies
Add the following dependencies to your pom.xml:

<dependency>

 <groupId>software.amazon.awssdk</groupId>

 <artifactId>s3</artifactId>

 <version>2.28.1</version>

</dependency>

Developer Guide: Storing Files to AWS S3 from Jakarta EE

5

Step 3: Configure AWS S3 Client
Create a CDI producer for the S3Client, scoped to the lifetime of the running application instance:

@ApplicationScoped

public class S3ClientProducer {

 @Inject

 @ConfigProperty(name = "aws.secretAccessKey")

 String accessKey;

 @Inject

 @ConfigProperty(name = "aws.accessKeyId")

 String secretKey;

 @Produces

@ApplicationScoped

 public S3Client createS3Client() {

 return S3Client.builder()

 .region(Region.US_EAST_1)

 .credentialsProvider(StaticCredentialsProvider.create(

 AwsBasicCredentials.create(accessKey, secretKey)))

 .build();

 }

}

We use MicroProfile Config to externalize the security credentials. This helps your application to
avoid hard coding the credentials. This way, you can have different credentials for different stages
of development environments without needing to change your application code. Also, using the
Config API for externalisation allows you to configure your application in the Payara Cloud application
dashboard. Using the Jakarta CDI producer construct gives you the ability to inject the S3Client to
different components that need it without need to initialize in all those places. Think of the producer
mechanism as “produce once use everywhere.”

Developer Guide: Storing Files to AWS S3 from Jakarta EE

6

Step 4: Implement File S3 Service
Now create a service or CDI component to handle file uploads:

@ApplicationScoped

public class S3Service {

 @Inject

 private S3Client s3Client;

 public void uploadFile(String bucketName, String key, InputStream

inputStream, long contentLength) {

 PutObjectRequest putObjectRequest = PutObjectRequest.builder()

 .bucket(bucketName)

 .key(key)

 .build();

 s3Client.putObject(putObjectRequest, RequestBody.

fromInputStream(inputStream, contentLength));

 }

 public byte[] downloadFile(String bucketName, String key) {

 GetObjectRequest getObjectRequest = GetObjectRequest.builder()

 .bucket(bucketName)

 .key(key)

 .build();

 ResponseBytes<GetObjectResponse> objectBytes = s3Client.

getObjectAsBytes(getObjectRequest);

 return objectBytes.asByteArray();

 }

 public Map<String, String> getFileMetadata(String bucketName, String key) {

 HeadObjectRequest headObjectRequest = HeadObjectRequest.builder()

 .bucket(bucketName)

 .key(key)

 .build();

Developer Guide: Storing Files to AWS S3 from Jakarta EE

7

 HeadObjectResponse headObjectResponse = s3Client.

headObject(headObjectRequest);

 return headObjectResponse.metadata();

 }

 public List<S3Object> listFiles(String bucketName) {

 ListObjectsV2Request listObjectsRequest = ListObjectsV2Request.

builder()

 .bucket(bucketName)

 .build();

 ListObjectsV2Response listObjectsResponse = s3Client.

listObjectsV2(listObjectsRequest);

 return listObjectsResponse.contents();

 }

}

We inject the S3Client into the S3UploadService. The Jakarta CDI runtime knows it should invoke
the producer method we created above for an instance to inject into this field. Of course, the instance
is technically a contextual instance, complete with a well-defined scope and context. As the pro-
ducer method sets the scope of the returned instance to ApplicationScoped, there will be only
a single instance of the S3Client injected into all fields that need it. This single instance will be fully
managed by the CDI runtime.

Uploading a file to a given S3 bucket entails calling the putObject method on the S3Client, passing
it a PutRequestObject and RequestBody instances. The method returns a PutOBjectResponse
that you can use to send metadata about the upload to clients of the S3UploadService. We do not
use that in this example. The S3Service also has methods to download and list files as well as get
file metadata. All these methods use similar patterns of [action]ObjectRequest. For example,
getting a file uses the GetObjectRequest and listing files uses the ListObjectsRequest.

Step 5: Use the Upload Service in a JAX-RS Resource
Create a REST endpoint to handle file uploads, assuming your application uses Jakarta REST:

@Path("/upload")

public class FileUploadResource {

 @Inject

 private S3UploadService s3UploadService;

Developer Guide: Storing Files to AWS S3 from Jakarta EE

8

 @POST

 @Consumes(MediaType.MULTIPART_FORM_DATA)

 public Response uploadFile(MultipartFormDataInput input) {

 try {

 Map<String, List<InputPart>> uploadForm = input.getFormDataMap();

 List<InputPart> inputParts = uploadForm.get("file");

 for (InputPart inputPart : inputParts) {

 MultivaluedMap<String, String> header = inputPart.getHeaders();

 String fileName = getFileName(header);

 InputStream inputStream = inputPart.getBody(InputStream.class,

null);

 long contentLength = inputStream.available();

 s3UploadService.uploadFile("your-bucket-name", fileName,

inputStream, contentLength);

 }

 return Response.status(Response.Status.OK).entity("File uploaded

successfully").build();

 } catch (Exception e) {

 return Response.status(Response.Status.INTERNAL_SERVER_ERROR).

entity("Failed to upload file").build();

 }

 }

 private String getFileName(MultivaluedMap<String, String> header) {

 String[] contentDisposition = header.getFirst("Content-Disposition").

split(";");

 for (String filename : contentDisposition) {

 if ((filename.trim().startsWith("filename"))) {

 String[] name = filename.split("=");

 String finalFileName = name[1].trim().replaceAll("\"", "");

 return finalFileName;

 }

 }

 return "unknown";

 }

Developer Guide: Storing Files to AWS S3 from Jakarta EE

9

@GET

 @Path("/download/{fileName}")

 @Produces(MediaType.APPLICATION_OCTET_STREAM)

 public Response downloadFile(@PathParam("fileName") String fileName) {

 try {

 byte[] fileContent = s3Service.downloadFile("your-bucket-name",

fileName);

 return Response.ok(fileContent)

 .header("Content-Disposition", "attachment; filename=\"" +

fileName + "\"")

 .build();

 } catch (Exception e) {

 return Response.status(Response.Status.INTERNAL_SERVER_ERROR)

 .entity("Failed to download file: " + e.getMessage())

 .build();

 }

 }

 @GET

 @Path("/metadata/{fileName}")

 @Produces(MediaType.APPLICATION_JSON)

 public Response getFileMetadata(@PathParam("fileName") String fileName) {

 try {

 Map<String, String> metadata = s3Service.getFileMetadata("your-

bucket-name", fileName);

 return Response.ok(metadata).build();

 } catch (Exception e) {

 return Response.status(Response.Status.INTERNAL_SERVER_ERROR)

 .entity("Failed to retrieve metadata: " + e.getMessage())

 .build();

 }

 }

 @GET

 @Path("/list")

 @Produces(MediaType.APPLICATION_JSON)

 public Response listFiles() {

 try {

 List<S3Object> files = s3Service.listFiles("your-bucket-name");

 return Response.ok(files).build();

 } catch (Exception e) {

Developer Guide: Storing Files to AWS S3 from Jakarta EE

10

 return Response.status(Response.Status.INTERNAL_SERVER_ERROR)

 .entity("Failed to list files: " + e.getMessage())

 .build();

 }

 }

}

The Jakarta REST endpoint exposes rest resources to match the methods of the S3UploadService. Of
course, if you application does not use Jakarta REST, you can also directly inject the S3UploadService
into any component that needs to interact with files. For example, your application may have a
component or service that generates documents as part of a specific workflow like policy docu-
ments for issuing an insurance policy. In this case, the policy service will declare a dependency on
S3UploadService and directly upload the generated policy documents to the policies bucket as
shown below.

@ApplicationScoped

public class PolicyService {

 @Inject

 private S3Service s3Service;

 private static final String POLICY_BUCKET = "insurance-policies";

 public String generateAndUploadPolicy(String customerName, String

policyType) {

 String policyNumber = generatePolicyNumber();

 String policyDocument = generatePolicyDocument(customerName,

policyType, policyNumber);

 InputStream inputStream = new ByteArrayInputStream(policyDocument.

getBytes(StandardCharsets.UTF_8));

 String key = "policies/" + policyNumber + ".txt";

 s3Service.uploadFile(POLICY_BUCKET, key, inputStream, policyDocument.

length());

 return policyNumber;

 }

 private String generatePolicyNumber() {

Developer Guide: Storing Files to AWS S3 from Jakarta EE

11

 return "POL-" + UUID.randomUUID().toString().substring(0,

8).toUpperCase();

 }

 private String generatePolicyDocument(String customerName, String

policyType, String policyNumber) {

 // This is a simplified version. In a real-world scenario, this would

be much more complex

 // and might involve templates, calculations, etc.

 return String.format("""

 Insurance Policy

 Policy Number: %s

 Customer Name: %s

 Policy Type: %s

 This document certifies that the above-named customer

 is insured under the specified policy type.

 Please refer to the full terms and conditions for details.

 """, policyNumber, customerName, policyType);

 }

 public byte[] retrievePolicy(String policyNumber) {

 String key = "policies/" + policyNumber + ".txt";

 return s3Service.downloadFile(POLICY_BUCKET, key);

 }

 public void archivePolicy(String policyNumber) {

 String sourceKey = "policies/" + policyNumber + ".txt";

 String destinationKey = "archived-policies/" + policyNumber + ".txt";

 // First, download the policy

 byte[] policyContent = s3Service.downloadFile(POLICY_BUCKET,

sourceKey);

Developer Guide: Storing Files to AWS S3 from Jakarta EE

12

 // Then, upload it to the archive location

 InputStream inputStream = new ByteArrayInputStream(policyContent);

 s3Service.uploadFile(POLICY_BUCKET, destinationKey, inputStream,

policyContent.length);

 // Finally, delete the original file

 s3Service.deleteFile(POLICY_BUCKET, sourceKey);

 }

}

The PolicyService is an application component that relies on the S3Service as part of the
policy issue workflow. As the S3Service encapsulates all the needed methods, ll directly uses
those methods to upload and archive policy documents. All these inter-application dependencies
are handled in a clean, loosely coupled way through the Jakarta CDI.

Your Application In Payara Cloud

So far all the examples we have seen have nothing specific to Payara Cloud. They all use the AWS
Java SDK and Jakarta EE constructs to upload, download, delete and archive files in S3. As Payara
Cloud applications are pure Jakarta EE Web Profile applications, you can use the range of libraries,
SDKs and utilities available in the Java ecosystem in your projects. Payara Cloud only provides you
with a hosted Payara Server to deploy your applications to the internet without needing to manage
the server and infrastructure manually.

Your applications have full outbound access to connect to any service on the internet. As we have
seen in this quick guide, there is nothing Payara Cloud specific we have used. Everything has been
100% Java and Jakarta EE based. To see for yourself, sign up for a free trial of Payara Cloud, launch
a new application with Payara Starter and take the service for a test drive.

Developer Guide: Storing Files to AWS S3 from Jakarta EE

13

Best Practices for Efficient and Secure S3 File
Management

Now let’s explore some best practices for using S3 in your Jakarta EE applications. This list is by no
means exhaustive, but it aims to give broad pointers to things to keep in mind when adopting S3
into your applications.

Secure Credential Management
Never hardcode AWS credentials, or any credentials for that matter, directly into your code. Instead,
use secure mechanisms like AWS Secrets Manager or environment variables through the MicroProfile
Config to store and retrieve credentials during runtime. This helps to protect your AWS account from
unauthorized access and potential security breaches.

Error Handling and Logging
Implement proper error handling and logging mechanisms within your S3 file management code.
We did not cover that in the S3Service, but in your production application, that class should have
ample logs and try-catch blocks to be able to log meaningful messages and aid in debugging. This
will ensure that any errors or exceptions encountered during S3 operations are gracefully handled
and logged appropriately. Comprehensive logging supports efficient troubleshooting and helps to
identify the root cause of issues quickly.

Large File Uploads
When dealing with large files exceeding 100MB in size, it's recommended to employ S3's multipart
upload feature or use the AWS SDK's TransferManager. These approaches enable efficient and reli-
able handling of large file uploads by breaking them down into smaller parts, allowing for parallel
uploads and improved resilience to network interruptions.

Caching
Implement caching strategies to store frequently accessed files locally or in a caching layer. This will
reduce the number of requests made to S3, improving performance and reducing latency, particularly
for read-heavy workloads. Caching can significantly enhance the user experience by providing faster
access to commonly requested files. It can also help reduce your usage bills.

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3-transfermanager.html

Developer Guide: Storing Files to AWS S3 from Jakarta EE

14

Content-Type Setting
Always set the appropriate Content-Type header when uploading files to S3. This ensures that brows-
ers and other clients can correctly interpret and handle the file type, enabling features like proper
rendering of images, videos, or documents when directly linked to from S3.

Versioning
Enable S3 bucket versioning for critical data to safeguard against accidental deletions or overwrites.
Versioning maintains a history of all object versions within a bucket, allowing you to restore previous
versions if needed. It acts as a safety net for data protection and enables you to roll back changes
if necessary. However, beware that this could have some cost implications. So do check the latest
pricing page of the S3 service to be sure.

Access Control
Implement fine-grained access control using S3 bucket policies and IAM roles. This ensures that only
authorized users and applications have access to specific S3 resources. Restricting access based on
need-to-know principles helps to maintain data confidentiality and integrity.

Encryption
Protect sensitive data by enabling server-side encryption for S3 objects. This will ensure that your
application data at rest within S3 is encoded and can only be accessed with the appropriate decryp-
tion keys. This protects your data from unauthorized access even in the event of physical storage
compromise.

Monitoring and Alerts
Set up CloudWatch metrics and alerts to monitor S3 operations, track usage patterns and detect
potential issues proactively. Monitoring allows you to gain insights into S3 performance, identify
anomalies and take corrective action before they impact your application or users.

Cost Optimization
Use S3 lifecycle policies to automatically transition less frequently accessed data to cheaper storage
classes like S3 Intelligent-Tiering, S3 Standard-Infrequent Access (S3 Standard-IA), or S3 Glacier
Instant Retrieval. This will help optimize your storage costs without sacrificing data availability or
retrieval performance.

Developer Guide: Storing Files to AWS S3 from Jakarta EE

15

Conclusions

This guide provides a comprehensive overview on how to integrate Amazon S3 with Jakarta EE
applications for efficient file storage, with a particular focus on deployment using Payara Cloud. Let's
recap the key objectives we've covered:

•	 We explored common file storage challenges in enterprise applications, including scalability,
availability, durability, performance, cost-effectiveness and security.

•	 We discussed why Amazon S3 is a popular solution, highlighting its virtually unlimited scal-
ability, high availability and durability, performance options, cost-effectiveness and robust
security features.

•	 We outlined key considerations for adopting S3, such as data classification, access patterns,
compliance, costs, latency, backup strategies, integration complexity and vendor lock-in
concerns.

•	 We provided a step-by-step implementation guide for integrating S3 into a Jakarta EE appli-
cation, including:

•	 Setting up AWS credentials

•	 Configuring the S3 client using CDI

•	 Implementing a comprehensive S3 service

•	 Creating REST endpoints for file operations

•	 We demonstrated how Payara Cloud seamlessly supports Jakarta EE applications with S3
integration:

•	 Payara Cloud provides a managed Payara Server environment, allowing you to focus on
your application logic rather than infrastructure management.

•	 The platform supports standard Jakarta EE and Java libraries, enabling straightforward
integration with AWS SDK and other third-party services.

•	 Payara Cloud applications have full outbound access, facilitating connections to external
services like Amazon S3.

•	 We shared best practices for using S3 with Jakarta EE applications on Payara Cloud, cover-
ing security, performance optimization, error handling and cost management.

Developer Guide: Storing Files to AWS S3 from Jakarta EE

16

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2024 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

After reading this guide, you should now be able to integrate S3 into your Jakarta EE applications
and deploy them on Payara Cloud. Remember to continually evaluate and optimise your S3 imple-
mentation to ensure maximum value, performance and security.

Payara Cloud's managed environment provides full outbound connectivity, allowing you to focus on
developing Jakarta EE applications with any third-party integrations without worrying about infra-
structure management. To experience this integration first-hand, sign up for a Payara Cloud free
trial. Use Payara Starter to quickly deploy your S3-integrated Jakarta EE application and see how
Payara Cloud simplifies cloud deployment.

PAYARA SERVER
FREE TRIAL

PAYARA CLOUD
FREE TRIAL

Interested in Payara? Try Before You Buy

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/page/free-trials/
https://www.payara.fish/page/payara-enterprise-downloads/
https://manage.payara.cloud/

	Introduction
	Objectives of this Guide

	Common File Storage Challenges
	Scalability: Handling Growing Storage Needs
	Availability: Ensuring Files are Accessible When Needed
	Durability: Protecting against Data Loss
	Performance: Fast Read and Write Operations
	Cost-effectiveness: Managing Storage Expenses
	Security: Protecting Sensitive Data

	Why Amazon S3?
	Considerations for Adopting S3

	The Implementation
	Prerequisites
	Step 1: Set Up AWS Credentials
	Step 2: Add AWS SDK Dependencies
	Step 3: Configure AWS S3 Client
	Step 4: Implement File S3 Service
	Step 5: Use the Upload Service in a JAX-RS Resource

	Your Application In Payara Cloud
	Best Practices for Efficient and Secure S3 File Management
	Secure Credential Management
	Error Handling and Logging
	Large File Uploads
	Caching
	Content-Type Setting
	Versioning
	Access Control
	Encryption
	Monitoring and Alerts
	Cost Optimization

	Conclusions

