
Creating Rich Web Applications
with Jakarta EE and Vaadin

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. User Guide

Creating Rich Web Applications with Jakarta EE and Vaadin

Guide Updated: July 2023Contents

Rich Web Applications 1

Characteristics 2

Interactivity 2

Dynamic Content 2

Rich User Interface (UI)	 2

Client-Side Processing 2

Cross-Platform Compatibility 2

Offline Capabilities 2

Vaadin 3

Key Features of Vaadin 3

Component-Based Architecture 3

Server-Side Rendering 3

Event-Driven Programming Model 3

Data Binding and Validation 3

Responsive Design 3

Integrations 3

What Vaadin Is Not 4

Setup 5

The Structure of A Vaadin Application 6

UI Components 6

Arranging With Layouts 9

Displaying Data With Grid 9

Creating Dynamism With Events 9

Binding Data 	 10

Data Validation 10

Navigation With Routers 11

Consistent Look With App Layouts 12

PWA With AppShellConfigurator 13

Business Logic 14

There’s More!	 15

Creating Rich Web Applications with Jakarta EE and Vaadin

1

Modern web applications have become the de facto way by which organisations deliver their products
and services to their intended users. Almost every one of us uses one web application or the other,
whether on our personal computers or mobile phones. Gmail, Twitter, Instagram, Facebook, Canva,
YouTube are all examples of web applications that have become part of our daily lives. Companies
like Google and Amazon pioneered the use of massive compute power to create highly customised
user experiences in their web applications. Over time, users have come to expect a certain standard
and experience when consuming web applications.

Jakarta EE, as a general-purpose development platform, has had excellent support for developing
web applications from the beginning. With its Jakarta Faces specification, you can develop web
applications for a wide variety of domains. However, Faces UI components are mostly created in
XML. For Java developers that want to get things done faster, this can be daunting.

Vaadin is an open-source UI development framework that has a pure Java API for development of
modern, rich web applications. As a component-based framework, you create your user interfaces
by composing individual components into your desired look using a Java API, in a similar way to how
Swing/JavaFX development is done.

In this guide, we look at building rich web applications with Vaadin on the Jakarta EE Platform. We
start by defining what a rich web application is, what Vaadin is and isn’t, the structure of a Vaadin
application, and how to create a sample app using the Vaadin and Jakarta EE. By the end of this
guide, you will have an overview of how to get started developing your own rich web applications on
the Jakarta EE Platform using Vaadin. You can take a look at the sample app for this guide currently
deployed to the cloud here.

Rich Web Applications

Rich web applications, sometimes also called rich internet applications, can be defined as web
applications that deliver the experiences of desktop applications in a browser. Desktop applications
have traditionally been characterised by instant results, dynamic changes and overall snappy feel.
Rich web applications are apps that deliver similar experiences over HTTP.

A typical example of a rich web application is Google’s Gmail. It allows you to read and compose
mails simultaneously without needing to refresh the browser window. All actions in the app happen
without reloading the full page. Another rich web application is Canva, a creative web application
that allows you to do photo and video editing along with other creative work in the browser.

Rich web applications differ from traditional web applications by the experiences they offer. Whereas
traditional web applications have mostly been characterised by server-side processing and static
pages, rich web applications use a combination of server and client-side processing to offer a much
fluid and smoother user experience. Some characteristics of rich web applications are:

https://start-dev-21bc180d.payara.app/jee-chatgpt/

Creating Rich Web Applications with Jakarta EE and Vaadin

2

Characteristics
There are some features that differentiate rich web applications from traditional applications.
These include:

Interactivity

Rich web applications allow users to interact
with the application in real-time, providing a
responsive and fluid user experience. They can
perform actions like drag and drop, instant form
validation, auto complete, and live data updates
without needing to reload the entire page.

Dynamic Content

RWAs can dynamically update the content on
the page without requiring a full-page refresh.
This enables smoother transitions, real-time
data updates, and asynchronous processing,
resulting in a more engaging and seamless
user experience.

Rich User Interface (UI)

RWAs often incorporate visually appealing and
interactive UI components, including advanced
forms, charts, graphs, interactive maps, sliders,
and multimedia elements. These components
enhance the usability and attractiveness of
the application.

Client-Side Processing

Unlike traditional web applications where most
processing occurs on the server, rich web appli-
cations shift some processing tasks to the cli-
ent-side using JavaScript and other client-side
technologies. This reduces the need for server
roundtrips, improving performance and allowing
for more interactive features.

Cross-Platform Compatibility

Rich web applications are designed to work
seamlessly across different platforms and
devices, including desktops, laptops, tablets,
and mobile devices. They often utilise respon-
sive design principles to adapt the layout and
functionality to various screen sizes.

Offline Capabilities

Some RWAs incorporate offline capabilities,
allowing users to continue using the applica-
tion even when an internet connection is not
available. Offline data synchronisation ensures
that changes made while offline are syn-
chronised with the server once a connection
is reestablished.

Creating Rich Web Applications with Jakarta EE and Vaadin

3

Vaadin

Vaadin is an open source web application development framework that simplifies the development
of rich business web applications using Java. You mostly build fully functioning rich web applications
without needing HTML, CSS and JavaScript expertise. Using a server-side programming model, the
UI components and the business logic reside on the server, allowing you to focus on creating your
UI in pure Java. This in turn abstracts away the need for client-side scripting. Vaadin handles the
communication between the server and the client automatically, ensuring a seamless, smooth, and
rich user experience.

Key Features of Vaadin

Component-Based Architecture

Vaadin provides a wide range of core UI com-
ponents, such as buttons, tables, forms, charts,
and layouts. These components are highly cus-
tomizable and can be easily assembled to create
complex and visually appealing user interfaces.

Server-Side Rendering

Vaadin renders the UI on the server-side, gen-
erating HTML and JavaScript that is sent to the
client browser. This approach enables efficient
data handling, automatic state management,
and reduces the amount of code that needs to
be written.

Event-Driven Programming Model

Vaadin uses an event-driven programming
model, where user interactions trigger events
on the server. You can respond to these events
by implementing event listeners in Java, ena-
bling dynamic and responsive user interfaces.

Data Binding and Validation

Vaadin provides powerful data binding capa-
bilities, allowing you to bind UI components
directly to data sources, such as Java objects
or backend services. It also includes built-in
validation mechanisms to ensure data integrity
and consistency. It has tight integration with the
Jakarta Bean Validation API for automatic val-
idation of user input.

Responsive Design

Vaadin supports responsive design principles,
allowing your applications to adapt their layout
and behaviour based on the screen size and
device type. This allows you to develop appli-
cations that are optimised for desktop, tablet,
and mobile devices.

Integrations

Vaadin seamlessly integrates with other Java
frameworks, libraries, and backend technolo-
gies. Using the Vaadin CDI add on, it has tight
integration with the Jakarta EE Platform, allow-
ing you to use the best of both.

Creating Rich Web Applications with Jakarta EE and Vaadin

4

What Vaadin Is Not
As discussed in the last section, Vaadin is for developing rich web applications, mostly in a busi-
ness context. Of course, you can use Vaadin to develop any web app, it is, however, more suited to
developing applications that, at their core, take user data, carry out some kind of processing on the
data and then give back some kind of response. For example, the app for this guide is one that takes
input from the user, makes a specific request to the OpenAI GPT API based on the user input, then
shows the response.

Even though it is a great framework for getting applications out fast, it may not necessarily be the
right tool for all web applications. For example, you may want to create a blogging application. You
would be better off picking a much more suitable tool like Wordpress than using Vaadin. However, if
you want to create for instance a banking app, or some internal number crunching application that
requires dashboards and data visualisations among others, then Vaadin is a great choice.

Creating Rich Web Applications with Jakarta EE and Vaadin

5

Setup
Before we start the technical discussion of using Vaadin, let us first set it up using Maven. The follow-
ing dependency shows the addition of Vaadin version 24.1.0 to a typical Jakarta EE 10/MicroProfile
6 based application.

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>com.vaadin</groupId>

 <artifactId>vaadin-bom</artifactId>

 <version>${vaadin.version}</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>com.vaadin</groupId>

 <artifactId>vaadin-core</artifactId>

 </dependency>

 <dependency>

 <groupId>com.vaadin</groupId>

 <artifactId>vaadin-cdi</artifactId>

 </dependency>

 <dependency>

 <groupId>jakarta.platform</groupId>

 <artifactId>jakarta.jakartaee-api</artifactId>

 <version>10.0.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.eclipse.microprofile</groupId>

 <artifactId>microprofile</artifactId>

 <version>6.0</version>

 <type>pom</type>

 <scope>provided</scope>

 </dependency>

 </dependencies>

With these in place, we are ready to start using Vaadin on top of Jakarta EE 10. Let’s go!

Creating Rich Web Applications with Jakarta EE and Vaadin

6

The Structure of A Vaadin Application
A typical Vaadin application will comprise custom components composed from the core components
of the framework. For example, the image shown below is the UI for the Jakarta GPT app of this guide.
It features the traditional forms and tables found in all web applications in one form or the other.

This UI is a component that comprises buttons, text fields, an image field, a grid/table and labels. A
typical Vaadin application will be made up of the UI components, navigation between those compo-
nents, validation of user input and client server communication. With the exception of the creation
of the UI components that represent the various aspects of your application, the Vaadin framework
does the heavy lifting for all the others, giving you simple constructs for navigation, data validation
and client-server communication. The rest of this guide breaks down these aspects of a Vaadin
application, starting with UI components.

UI Components
Vaadin application user interfaces are composed from the components provided by the framework.
A typical component will consist of different input and output components arranged in desired order
using provided layouts. The full component that renders the user interface shown in Image 1-1 is
shown below.

public class PointsOfInterestView extends VerticalLayout {

 private Grid<PointOfInterest> grid;

 private Binder<SearchCriteria> binder;

 private Button searchButton;

 private Button resetButton;

 private DynamicFileDownloader pdfDownload;

 private HorizontalLayout userInputLayout;

 private TextField totalTextField;

 private SearchCriteria searchCriteria;

 private PointsOfInterestResponse response;

 private ComboBox<String> currencyField;

 private static final Map<String, Locale> currencies = new HashMap<>();

 static {

 currencies.put("US Dollar ($)", Locale.US);

 currencies.put("British Pound (\u00a3)", Locale.UK);

 currencies.put("Euro (\u20ac)", Locale.GERMANY);

 }

Creating Rich Web Applications with Jakarta EE and Vaadin

7

 @PostConstruct

 private void init() {

 Component logoLayout = ComponentUtil.generateTitleComponent("images/

trip_on_budget.png","BudgetJourney");

 // Create the binder for the search criteria

 binder = new Binder<>(SearchCriteria.class);

 userInputLayout = new HorizontalLayout();

 userInputLayout.setDefaultVerticalComponentAlignment(Alignment.END);

 // Create the text fields for the search criteria

 TextField cityField = new TextField("Your next destination:");

 cityField.setWidth("300px");

 cityField.getStyle().set("margin-right", "10px");

 cityField.setPlaceholder("city name");

 binder.forField(cityField)

 .asRequired("City name is required")

 .bind(SearchCriteria::getCity, SearchCriteria::setCity);

 var budgetField = new NumberField("Your Budget")

 .withMin(1)

 .withPlaceholder("Your budget")

 .withStyle("margin-right", "10px")

 .withWidth("300px")

 .withRequired(true)

 .withTitle("Enter your budget:");

 binder.forField(budgetField)

 .asRequired("Budget is required")

 .withValidator(budget -> budget > 0, "Budget must be greater

than zero")

 .withConverter(new DoubleToBigDecimalConverter())

 .bind(SearchCriteria::getBudget, SearchCriteria::setBudget);

 // Create the search button

 searchButton = new Button("Go!");

Creating Rich Web Applications with Jakarta EE and Vaadin

8

 searchButton.getStyle().set("margin-top", "10px");

 searchButton.addClickListener(e -> searchPointsOfInterest());

 searchButton.setDisableOnClick(true);

 resetButton = new Button()

 .withIcon(VaadinIcon.TRASH.create())

 .withStyle("margin-top", "10px")

 .withClickListener(b -> resetFields());

 currencyField = new ComboBox<>();

 currencyField.setItems(currencies.keySet());

 currencyField.setPlaceholder("Pick a currency");

 userInputLayout.add(cityField, budgetField, currencyField, resetButton,

searchButton);

 add(logoLayout, userInputLayout);

 totalTextField = new TextField();

 totalTextField.setVisible(false);

 // Create the grid to display the points of interest

 grid = new Grid<>();

 grid.addColumn(PointOfInterest::getName).setHeader("Place").

setFlexGrow(1).setSortable(true);

 grid.addColumn(PointOfInterest::getInfo).setHeader("Info").

setFlexGrow(2);

 Grid.Column<PointOfInterest> costColumn = grid.addColumn(v ->

renderCost(v.getCost()));

 costColumn.setFooter(totalTextField);

 costColumn.setHeader("Cost").setFlexGrow(0).setSortable(true).

setTextAlign(ColumnTextAlign.END);

 grid.setSelectionMode(Grid.SelectionMode.NONE);

 add(grid);

 pdfDownload = new DynamicFileDownloader();

 pdfDownload.setText("PDF");

 pdfDownload.setFileName("itinerary_" + LocalDateTime.now(ZoneOffset.

UTC) + ".pdf");

 }

Creating Rich Web Applications with Jakarta EE and Vaadin

9

Class PointsOfInterestView extends com.vaadin.flow.component.orderedlayout.
VerticalLayout, making it a layout that vertically stacks its children, one atop the other. It begins
with the declaration of instance variables comprising text fields, buttons, a grid, combo box and some
custom objects. All these objects are then instantiated in an initialization method annotated with @
jakarta.annotation.PostConstruct. This method will be invoked after an instance of this bean
is fully instantiated by the Jakarta CDI runtime. Remember this application declares a dependency
on Vaadin CDI addon, so we can freely use Jakarta CDI to manage our dependencies and objects.

A typical Vaadin component is instantiated like any other Java object. For instance the grid object is
instantiated as grid = new Grid<>(), as are all the other built-in Vaadin components. Thanks to
its rich Java API, we are able to customise the various components by calling different methods on
them. For instance the searchButton object gets a “margin-top” CSS style set by calling getStyle()
method on it. All the other components are customised by calling relevant methods on them.

Arranging With Layouts

Class PointsOfInterestView, by extending VerticalLayout, is itself a component capa-
ble of accepting and arranging other components in a vertical hierarchy. In Vaadin applications,
you will use a myriad combination of different layouts to achieve the exact arrangement of UI ele-
ments your application requires. Within the class is another layout of type HorizontalLayout. A
HorizontalLayout is a one that arranges its components, or children in a horizontal manner. It
is the counterpart to VerticalLayout.

The cityField, budgetField, currencyField, resetButton and searchButton are all placed
together in a horizontal layout. This places them side by side horizontally, an arrangement that our
application requires. Referring back to Image 1-1, this results in the input and button fields above
the grid. Both HorizontalLayout and VerticalLayout offer a very convenient way of placing
your app in an exact position as your application desires.

Displaying Data With Grid

Almost every nontrivial application will need to display data in one form or the other. Vaadin ships
with a Grid component that allows you to display tabular data by attaching it to a source. The source
of the data should be a Collection of any type you want to display in the table.

Class PointsOfInterestView uses the com.vaadin.flow.component.grid.Grid component
to display data returned from the OpenAI GPT API. The grid is instantiated and the various columns
are set to match the fields of the Java class whose instances are going to be displayed in the grid.
Remember as the grid is typesafe, it is bound to a type through its setItems() method. You can cus-
tomise all aspects of the grid including the columns rendering labels. The grid component is one of
the most versatile components in the Vaadin library.

Creating Dynamism With Events

Creating Rich Web Applications with Jakarta EE and Vaadin

10

Vaadin components send information from the client to the server through the firing of events. An
event is any occurrence on the component that your application might be interested in. For exam-
ple you can listen for mouse clicks on a given button and take some form of action. For example
the searchButton object, when clicked, should cause the user entered data to be relayed to the
server for processing. We attach a click listener to it by calling the addClickListener() method,
passing in a lambda.

In our code, we call the searchPointsOfInterest(). You can listen for any event that a given
component can emit. Using events allows you to deliver rich experiences based on user interaction
anywhere in your Vaadin application.

Binding Data

You can bind properties in your Java classes to UI components in Vaadin using a binder. A binder
is a collection of bindings, each representing the mapping of a single field, through converters and
validators, to a backing property. A binder instance can be bound to a single bean instance at a time
but can be rebound as needed. Class PointsOfInterestView uses a com.vaadin.flow.data.
binder.Binder binder instance to bind the fields in class SearchCriteria, making any given
instance of SearchCriteria passed to the binder get bound to values held by the bound fields.

Data Validation

Making sure user entered data is valid is an important part of web application development. As the
application is opened to the world, there is always the risk of having users entering invalid data,
whether by accident or intentionally. To prevent that, you should validate user entered data to ensure
it meets some minimum application requirement before processing. Vaadin has different ways of
validating user entered data. You can set constraints on input components themselves or use the
binder to validate. On the Jakarta EE platform, you can use the Bean Validation API and instead of
Binder, use the Bean Validation aware com.vaadin.flow.data.binder.BeanValidationBinder
sub class.

Class PointsOfInterestView manually adds validations to the binder using its fluent API. For the
citiField text field, the requirement is that it’s not null or empty, and if that constraint fails, then the
message “City name is required” is shown. For the budgetField, which is a number field bound
type BigDecimal in the Java code (SearchCriteria class), the constraint is that a value greater
than zero must be set, if not then the message “Budget must be greater than zero” is shown.

With our validations in place, a call to the writeBeanIfValid method on the binder will cause
validations to take place. The searchPointsOfInterst() method in which the binder is bound
to an instance of its bean is shown below.

Creating Rich Web Applications with Jakarta EE and Vaadin

11

private void searchPointsOfInterest() {

 // Bind the search criteria to the binder

 searchCriteria = new SearchCriteria();

 if (binder.writeBeanIfValid(searchCriteria)) {

 // Call the suggestPointsOfInterest method and update the grid with

the results

 response = tripsAdvisorService

 .suggestPointsOfInterest(searchCriteria.getCity(),

searchCriteria.getBudget());

 if (response.getError() != null) {

 showErrorMessage(String.format("Failed loading data from OpenAI

GPT: %n%s", response.getError()));

 } else {

 grid.setItems(response.getPointsOfInterest());

 totalTextField.setVisible(true);

 totalTextField.setValue(renderCost(response.getTotalCost()));

 downloadAsPDF();

 }

 searchButton.setEnabled(true);
 }

 }

The method creates an instance of the SearchCriteria class and passes it to the writeBeanIfValid
method of the binder. This method will write the values of the bound instances to the passed bean
instance only if all declared validations pass. If the user entered data is valid, then a call is made to
the backend with the city and budget. The returned response is used to populate the grid by calling
its setItems() method. If there is any constraint violation, Vaadin automatically shows the various
messages assigned to each field. All this happens automatically on your behalf.

Navigation With Routers

Even though Vaadin can be used to develop single page applications, you can also navi-
gate between components through the use of the com.vaadin.flow.router.Route. Class

Creating Rich Web Applications with Jakarta EE and Vaadin

12

PointsOfInterestView is a route that is mapped to the path ‘budget-journey’, meaning when the
user navigates to that path, which is relative to the application context path, Vaadin will instantiate
an instance of PointsOfInterestView. To declare the class as mapped to the route ‘budget-jour-
ney’, we annotate it as follows:

@Route(value = "budget-journey", layout = ParentAppLayout.class)
public class PointsOfInterestView extends VerticalLayout {
}

The com.vaadin.flow.router.Route annotation takes a value that is the URL path to which this
view should be mapped. The second parameter of the annotation as shown above is layout.

Consistent Look With App Layouts

Most web applications have a consistent look and feel. To achieve the same with Vaadin, you can
use com.vaadin.flow.component.applayout.AppLayout. An app layout is a component for
building common application layouts. The layout consists of three sections: a horizontal navigation
bar (navbar), a collapsible navigation drawer (drawer) and a content area. An application’s main
navigation blocks should be positioned in the navbar and/or drawer while views are rendered in the
content area. App Layout is responsive and adjusts automatically to fit desktop, tablet, and mobile
screen sizes. The ParentLayout used in the application is shown below.

public class ParentAppLayout extends AppLayout {

@PostConstruct

private void init() {

UI.getCurrent().getElement().setAttribute("theme", Lumo.LIGHT);

createHeader();

createDrawer();

}

private void createHeader() {

H1 logo = new H1("Jakarta EE GPT");

logo.addClassNames(

LumoUtility.FontSize.LARGE,

LumoUtility.Margin.MEDIUM);

Creating Rich Web Applications with Jakarta EE and Vaadin

13

var header = new HorizontalLayout(new DrawerToggle(), logo);

header.setDefaultVerticalComponentAlignment(FlexComponent.Alignment.CENTER);

header.setWidthFull();

header.addClassNames(

LumoUtility.Padding.Vertical.NONE,

LumoUtility.Padding.Horizontal.MEDIUM);

addToNavbar(header);

}

private void createDrawer() {

var verticalLayout = new VerticalLayout();

var pointOfViewLink = generateComponent("Trip", VaadinIcon.AIRPLANE.create(),

PointsOfInterestView.class);

var imageGen =generateComponent("AI Image", VaadinIcon.CAMERA.create(),

GptImageGenerator.class);

var home =generateComponent("Home", VaadinIcon.HOME_O.create(), HomePage.

class);

verticalLayout.add(home, pointOfViewLink, imageGen);

addToDrawer(verticalLayout);

}

}

The ParentLayout extends AppLayout and sets up the header and drawer parts. The drawer is
similar to what you find on mobile devices. It can be oriented vertically or horizontally. This app uses
the vertical drawer and can be seen in the first image shown above. Passing this layout class to view
components causes them to be rendered consistently.

PWA With AppShellConfigurator

You can make your Vaadin application a progressive web app by implementing the com.vaadin.
flow.component.page.AppShellConfigurator interface as shown below. This interface, coupled
with the com.vaadin.flow.server.PWA annotation makes our app installable as an app on the
user's machine. The AppShellConfigurator implementation is shown below.

Creating Rich Web Applications with Jakarta EE and Vaadin

14

@PWA(name = "Budget Journey With ChatGPT", shortName = "budgetGPT",

description = "A Jakarta EE/Vaadin app that takes a city/country "

+

"and a budget amount then suggests places to visit based on the budget")

public class AppShell implements AppShellConfigurator {

}

With this in place, Vaadin will make the install icon available to the user in the address bar. Installing
the app makes it available alongside other installed apps of the user.

Business Logic

As a server side framework, both the UI and business components are side by side. PointsOfInterestView
class depends on two business components which are injected using Jakarta CDI’s @Inject anno-
tation. The class is reproduced below, showing its dependency declaration.

@Route(value = "budget-journey", layout = ParentAppLayout.class)

public class PointsOfInterestView extends VVerticalLayout {

 @Inject
 private TripsAdvisorService tripsAdvisorService;
 @Inject
 private ReportService reportService;

}

Because Vaadin is a server-side framework, both the UI and the business components are side by
side. This greatly simplifies app development because you as a developer do not have to context
switch between client-server side. Everything is automatically handled for you.

Creating Rich Web Applications with Jakarta EE and Vaadin

15

There’s More!

In this brief guide, we have looked at Jakarta EE application development with Vaadin. There is so
much more you can do with Vaadin and Jakarta EE. As stated at the beginning of this guide, the app
can be accessed from here. The full code is also available on GitHub for your reference. You should
check out the Vaadin tutorials for how to fulfil common application requirements like database
access, user login, handling state and testing.

Found this useful? Try more of our guides:

A Developer Guide To
WebSocket Development
On The Jakarta
EE Platform

The Complete Guide
To JSON Processing
On the Jakarta
EE Platform

The Complete Guide to
Testing on the Jakarta
EE Platform

https://github.com/payara/Payara-Examples/tree/Payara6/blog-examples/jee-chatgpt
https://www.payara.fish/resource/a-developer-guide-to-websocket-development-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/the-complete-guide-to-testing-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/The-Complete-Guide-To-JSON-Processing-On-The-Jakarta-EE-Platform/
https://www.payara.fish/resource/a-developer-guide-to-websocket-development-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/a-developer-guide-to-websocket-development-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/a-developer-guide-to-websocket-development-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/a-developer-guide-to-websocket-development-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/The-Complete-Guide-To-JSON-Processing-On-The-Jakarta-EE-Platform/
https://www.payara.fish/resource/The-Complete-Guide-To-JSON-Processing-On-The-Jakarta-EE-Platform/
https://www.payara.fish/resource/The-Complete-Guide-To-JSON-Processing-On-The-Jakarta-EE-Platform/
https://www.payara.fish/resource/The-Complete-Guide-To-JSON-Processing-On-The-Jakarta-EE-Platform/
https://www.payara.fish/resource/the-complete-guide-to-testing-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/the-complete-guide-to-testing-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/the-complete-guide-to-testing-on-the-jakarta-ee-platform/

Creating Rich Web Applications with Jakarta EE and Vaadin

16

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2023 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Build Fast and Secure.

Supported.

Best for Jakarta EE and MicroProfile.

FREE TRIAL

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/page/payara-enterprise-downloads/

	Rich Web Applications
	Characteristics
	Interactivity
	Dynamic Content
	Rich User Interface (UI)
	Client-Side Processing
	Cross-Platform Compatibility
	Offline Capabilities

	Vaadin
	Key Features of Vaadin
	Component-Based Architecture
	Server-Side Rendering
	Event-Driven Programming Model
	Data Binding and Validation
	Responsive Design
	Integrations

	What Vaadin Is Not
	Setup
	The Structure of A Vaadin Application
	UI Components
	Arranging With Layouts
	Displaying Data With Grid
	Creating Dynamism With Events
	Binding Data
	Data Validation
	Navigation With Routers
	Consistent Look With App Layouts
	PWA With AppShellConfigurator

	Business Logic
	There’s More!

	Payara Enterprise Trial:

