
A Business Guide To Cloud
Deployment Options For
Jakarta EE Applications

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. User Guide

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

Guide Updated: August 2023Contents

What is Jakarta EE?	 1

What Is a Specification? 	 1

What Is a Compatible Implementation?	 2

What is Eclipse MicroProfile?	 2

Jakarta EE Programming Model 3

Development 3

Testing 	 4

Deployment 4

Jakarta EE Deployment Options 4

Application Deployment Techniques 5

A/B Testing 5

Recreation 5

Beta/Canary 	 5

Deployment Options 5

Self Hosted Dedicated Servers 6

Containerized Deployments 7

Amazon Web Services 7

AWS Beanstalk 7

Amazon Elastic Container Service 	 7

AWS App Runner 7

Microsoft Azure 7

Web App for Containers 7

Google Cloud Platform 8

Google Cloud Run 8

Cost Considerations 8

Native Jakarta EE Deployment 8

Payara Cloud 9

Summary	 10

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

1

The Java Platform has been the platform of choice for enterprise application development for a lot
of developers over the last two and half decades. There is no shortage of frameworks and platforms
for developing all kinds of software applications using the Java Programming Language. One such
platform that has stood the test of time is Jakarta EE.

This guide takes a look at various production deployment options for Jakarta EE applications. It
starts off by taking a brief look at the theoretical foundations of Jakarta EE, followed by a look at the
Jakarta EE programming model. It then takes a look at the various production deployment options
available for a typical Jakarta EE application. By the end of this guide, you should have a good grasp
of the deployment options available to you for your next Jakarta EE project.

What is Jakarta EE?

Jakarta EE is a set of community developed, abstract specifications that together form a platform for
developing end-to-end, multi-tier enterprise applications. Jakarta EE is built on the Java Standard
Edition, and aims to provide a stable, reliable and vendor neutral platform on which to develop cloud
native applications.

Hitherto, Jakarta EE was called Java EE and was a property of Oracle Inc., evolved through the Java
Community Process (JCP). However, in late 2017, Oracle decided to move the platform to an open
foundation for a much broader community-led evolution. The Eclipse Foundation got chosen and
Java EE, after the transfer, got rebranded to Jakarta EE.

What Is a Specification?
As stated in the above definition, Jakarta EE is made up of a set of specifications that each cover a
specific API for solving a specific software development need. For example, the Jakarta Contexts
and Dependency Injection (CDI) specification provides constructs for creating loosely coupled appli-
cations through dependency injection. These different specifications are combined into a single
“umbrella” specification for each Jakarta EE release. As such, Jakarta EE 10 for instance, is released
under the Jakarta EE 10 specification.

More technically, a specification is a formal proposal document made to the Jakarta EE Specification
Committee through the Jakarta EE Specification Process (JESP) that outlines the functions of a given
set of APIs. This document outlines what the expected behaviour should be for various invocations
of the API. The specification then acts as the blueprint for the API.

https://jakarta.ee/specifications/cdi/

2

What Is a Compatible Implementation?
As a specification is merely a document that outlines the behaviour of a given API, it needs an
implementation that realises the actual outcomes for each invocation of the API. For instance,
the Jakarta Persistence specification provides the EntityManager interface that has the persist()
method. This method, when called and passed an instance of a Jakarta Persistence entity, per-
sists that entity instance as a database row to the underlying database. The “library” that does the
actual work of taking that instance and making sure it gets stored to the durable storage when the
EntityManager#persist() method is invoked, is called a compatible implementation of the Jakarta
Persistence specification.

Each specification that makes up the full Jakarta EE platform has an implementation. As a specifica-
tion itself, the Jakarta EE platform also has an implementation in the form of compatible products. As
the specifications are separated from their implementations, you as a developer will generally code
against the API constructs of the specification, and are free to pick any compatible implementation
of the platform. With this abstraction, Jakarta EE implementation vendors can collaborate on the
base, standard specifications and compete through innovations on top of the base platform.

An example of such invocation is the Payara Cloud offering from Payara. This innovation helps you
realise the dream of true separation of your business domain application and the runtime that pow-
ers it. With Payara Cloud, you simply upload your Jakarta EE application web archive (.war file) and
have it automatically deployed to the cloud, just as Jakarta EE was envisaged to have separation
of business domain from the runtime. Another example of custom features available on the Payara
Platform is remote CDI events. This feature, built on the Jakarta CDI specification, allows the firing
of CDI events that can be observed by any listener in a given Hazelcast cluster.

What is Eclipse MicroProfile?

The Jakarta EE Platform is a general purpose platform for developing all kinds of applications. As
modern application development paradigms have changed a lot in the past years, there is a need
to evolve the platform to meet such changes. One such paradigm is cloud-native software applica-
tion development.

As the base Jakarta EE Platform has always been geared towards enterprises, it has historically
evolved at a much slower pace than changes in the software development space. It is for this reason
that the Eclipse MicroProfile project was created as an extension to the base platform to provide
cloud-native APIs for developing modern cloud-based applications.

Options for Serverless in Java

https://www.payara.fish/products/payara-cloud/
https://docs.payara.fish/community/docs/Technical%20Documentation/Public%20API/CDI%20Events.html

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

3

Eclipse MicroProfile, built upon Jakarta CDI, Jakarta REST and Jakarta JSON Processing, comes
with the following APIs

•	 OpenTracing
•	 OpenAPI
•	 REST Client
•	 Config
•	 Fault Tolerance
•	 Metrics
•	 JWT Propagation
•	 Health

These APIs augment the much larger Jakarta EE Platform APIs to provide the developer with a cohe-
sive set of APIs for developing, testing and deploying cloud-native modern enterprise applications.

Jakarta EE Programming Model

The programming model of Jakarta EE follows the general software development lifecycle process
of requirements gathering and planning, design and/or prototyping, actual development, testing,
deployment and maintenance. Different companies use different combinations of these steps.
However, development, testing and deployment are steps that almost every company’s application
development process will entail.

Development
Where Jakarta EE differs significantly is the separation of runtime from application code. Historically,
Jakarta EE has always been a platform that encourages the separation of platform runtime from
business code. This way, your concern with using the platform should be delivering business value.
This separation of runtime from application code is demonstrated in the universal way of adding the
Jakarta EE dependency to your project as shown in Listing 1.

Listing 1

	 <dependency>

			 <groupId>jakarta.platform</groupId>

			 <artifactId>jakarta.jakartaee-api</artifactId>

			 <version>10.0.0</version>

			 <scope>provided</scope>

		 </dependency>

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

4

The scope of the dependency is set to provided. This means the application expects the runtime
to provide implementations of all the specifications that are part of the given release, in this case
version 10. The resulting project artefact will not include any implementations of the Jakarta EE
specifications. This separation of the application runtime from business code allows for true sep-
aration of concerns, and also makes it easy to have different implementations of the specification
without needing to change or repackage application code.

Testing
Every non-trivial enterprise application will require testing. There are different types and combina-
tions of testing that can be employed to assure a certain level of quality for software applications.
Most applications will employ a combination of unit, integration and acceptance testing.

Deployment
There are different options for deploying Jakarta EE applications, ranging the simplest to the most
complicated. The next sections of this guide go into detail about the various options available to
you as a Jakarta EE developer.

Jakarta EE Deployment Options

Application deployment can be defined as the process of making an application or collection of
applications that solves a particular problem available to users with that problem. This definition
may sound straightforward, but application deployment is a long process that starts with testing. A
typical application will have a suite of tests that run on a CI/CD pipeline. This pipeline will then pro-
duce an artefact that, depending on the specific configuration, will be transformed into a container
image or directly uploaded to the actual deployment server. Before we look at the various deployment
options, let us first consider some application deployment techniques out there.

https://www.payara.fish/resource/the-complete-guide-to-testing-on-the-jakarta-ee-platform/

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

5

Application Deployment Techniques
An application deployment technique is the actual strategy used to roll out different versions of a
released (or sometimes unreleased) application to users. Each company will have its own way of
making releases available. But in general, the following five techniques are the most popular.

A/B Testing

This deployment technique entails releasing
two versions of the application with likely varied
functionalities to two different subsets of users
under predefined conditions. This technique is
mostly used to test which version of an appli-
cation produces some required outcome. After
the testing, the underperforming application will
be undeployed.

Recreation

This deployment technique is perhaps the most
straightforward one in which an existing version
is supplanted by a new version. The old version
is terminated and undeployed.

Beta/Canary

This deployment technique is used to release
a not fully ready version of the application to
users that opt to use such version in return
for feedback. Such users get to test the lat-
est upcoming features first and in turn pro-
vide feedback that will be used to make
the application fully ready for all the users.

Ramped

This deployment technique is where a new
version of the application is released and
then it gradually replaces the previous ver-
sion. The previous version will be in use until
all users get updated/upgraded to the latest
deployed version.

This is not an exhaustive list of deployment techniques, but are by far the most popular ones that
are deployed in one form or the other across many companies.

Deployment Options
There are a good number of deployment options out there that can be used to deploy production
Jakarta EE applications. The type of deployment option is mostly a combination of business and
technical considerations that are particular to each organisation. The following are the major options
available to you as a Jakarta EE developer.

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

6

Self Hosted Dedicated Servers

This used to be the most popular option for deploying Jakarta EE applications in the past. This option
entails an organisation signing up for a virtual machine from a provider, downloading an application
runtime like Payara on the machine, configuring it and then uploading an application binary to the
configured server. This option may still be popular with solo/small organisations with very limited
budgets.

Another option with dedicated servers is where an organisation leases dedicated servers, then uses
in-house skills to provision all the infrastructure needed to deploy containerised Jakarta EE appli-
cations. So even though the application is containerised, the entire infrastructure for deployment is
managed in-house by the organisation.

The cost of dedicated servers varies depending on the configured specification. However, this option
is predictable in terms of cost because the cost of the server is known ahead of time. An organisation
can plan and budget based on how many servers they will need and know exactly how much it will
cost.

The simplicity and cost effectiveness of this deployment option is outweighed by all the plumbing
that needs to be done to get the server ready to receive and serve traffic. The management of the
application server and the containerised infrastructure are done by personnel of the organisation.
With the rise of cheaper cloud offerings, this option isn’t one I’d recommend as a first option to you.

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

7

Containerized Deployments
The rise of containerisation changed how software is developed, tested and deployed. Container
platforms like Docker and Kubenetes have given rise to an almost infinite number of options for
application deployment. For brevity, let us assess Jakarta EE containerised deployment options from
the three big cloud providers - Amazon Web Services, Microsoft Azure and Google Cloud Platform.

Amazon Web Services

Amazon Web Services is by far the largest cloud
provider in the world with a plethora of services
for every software development concern. For
containerized Jakarta EE deployment, AWS has
the following options.

AWS Beanstalk

Beanstalk is a service that allows you to deploy
your containerized Jakarta EE applications, with
ancillary services automatically provisioned for
you. You provision the service through a series
of answers and then the platform deploys your
containerised application on your behalf, with a
public facing URL.

Amazon Elastic Container Service

Amazon Elastic Container Service is a fully
managed infrastructure for running container-
ised workloads. It has integration with Amazon
Container Registry for pulling your published
images. This option is by far the most flexible but
also likely the most complicated to fully grasp.
It is flexible because it is general purpose for
running any imaginable container workload. And
naturally that much flexibility comes with some
complexity that will need to be managed.

AWS App Runner

AWS App Runner is a simplified version of
Amazon Elastic Container Service for deploy-
ing containerised web applications and API ser-
vices. You upload your container image, or point
the service to where that image can be pulled
from, configure the service and have it deployed.

Microsoft Azure

Microsoft Azure is the second most popular
cloud provider, after AWS. Given the maturity
and enterprise experience of Microsoft, Azure
equally has a plethora of services for deploy-
ing containerised workloads. For Jakarta
EE applications, Azure has the Web App for
Containers service.

Web App for Containers

Web App for Containers is a fully managed plat-
form for deploying containerised web applica-
tions. All needed services are automatically pro-
visioned for you. With Microsoft owning GitHub,
it is much easier to set up a direct pipeline to
the service from your GitHub repo. Azure does
have other services that can be used to deploy
Jakarta EE workloads. However, Web App for
Containers is by far the most flexible and feature
for containerised Jakarta EE applications.

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

8

Google Cloud Platform

Google Cloud Platform is the cloud offering from
Google. It has a plethora of services for all kinds
of industries and software needs. For Jakarta EE
containerised workload, Google has Cloud Run.

Google Cloud Run

Google Cloud Run is a managed platform for
deploying containerised applications. This is
naturally suited to deploying Jakarta EE contain-
erised workloads. Cloud Run has feature parity
with the other options from the above discussed
providers with regards to integrations with Git
and container registries.

Cost Considerations

The containerised deployment options dis-
cussed above are not an exhaustive list of all
that the cloud providers offer. However, one
thing that is common among all of them is the
pricing model. All of them use the pay as you
go cost model for billing. This model can be
both beneficial and challenging depending on a
number of factors. Paying only for what you use
is naturally a good thing since you save money
when your application isn’t serving requests.
However, from a financial planning perspective,
this model can be very challenging for budgeting
and forecasting.

How much should we allocate to deployment
costs? What happens if we have sudden, unex-
pected spikes? How much do we budget for
that? These are some of the considerations that
will go into planning for application deployment.
However, given the popularity of these services
and their pricing models, it is safe to say that for
a large number of organisations, such a model
works. But keep in mind what works for large
organisations in terms of pricing may not neces-
sarily work for small and medium organisations.
Your mileage with regards to cloud cost models
may vary.

Native Jakarta EE Deployment
The options for Jakarta EE application deployment discussed so far are much more generic and use
containers to abstract your application. However, the developer still needs to take care of packaging
the application as a container with all the setup needed for such. However, there is also a native
Jakarta EE cloud deployment option that goes a step back by allowing you to upload your application
binary (.WAR file) and have it automatically deployed to the cloud.

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

9

Payara Cloud

Payara Cloud is the first Jakarta EE native cloud deployment option that abstracts you from all the
container infrastructure and information, freeing you to focus almost exclusively on your application
code and business domain. It works by allowing you to upload your application binary, optionally
configure your application data source and other resources and have the application automatically
deployed to the cloud, with a URL for accessing it.

Each account has a namespace within which N-number of applications can be deployed. Each appli-
cation has its unique URL to which you can direct application specific custom domains. Payara Cloud
is a product from Payara, a leading and well known Jakarta EE community organisation. Payara Cloud
is a new cloud native Jakarta EE application production deployment option that is worth considering.

The service has a simple pricing model where you pay for a pre-allocated block of compute resources.
This gives you a clear way to budget for application deployment as you know ahead of time what
compute resources you are paying for and how much it will cost you over a given period. Payara Cloud
abstracts you from the low level infrastructure plumbing, relieving your team to focus on delivering
business value.

https://www.payara.fish/products/payara-cloud/

A Business Guide To Cloud Deployment Options For Jakarta EE Applications

10

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2023 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Summary

There are a good number of options for deploying Jakarta EE applications to the cloud. Each option
comes with its own costs and benefits. The choice of a deployment option is a business and techni-
cal decision. However, not all options are suitable for all organisations. As a developer, architect or
CTO, your goal is to deliver business value to customers. And choosing the right option that frees as
much time as possible to deliver value to customers must be the most important metric in selecting
a cloud deployment option.

If you liked this, you might like:

•	 Explaining Microservices: No Nonsense Guide for Decision Makers
•	 Jakarta EE 10: What Decision Makers Need to Know
•	 Dismiss The Myths: Open Source

https://www.payara.fish/resource/explaining-microservices-no-nonsense-guide-for-decision-makers/
https://www.payara.fish/resource/jakarta-ee-10-what-you-need-to-know/
https://www.payara.fish/resource/dismiss-the-myths-open-source/
http://payara.cloud
http://payara.cloud

	What is Jakarta EE?
	What Is a Specification?
	What Is a Compatible Implementation?

	What is Eclipse MicroProfile?
	Jakarta EE Programming Model
	Development
	Testing
	Deployment

	Jakarta EE Deployment Options
	Application Deployment Techniques
	A/B Testing
	Recreation
	Beta/Canary

	Deployment Options
	Self Hosted Dedicated Servers

	Containerized Deployments
	Amazon Web Services
	
AWS Beanstalk
	Amazon Elastic Container Service
	AWS App Runner
	Microsoft Azure
	Web App for Containers
	Google Cloud Platform
	Google Cloud Run
	Cost Considerations

	Native Jakarta EE Deployment
	Payara Cloud

	Summary

