
A Quick Guide To Enterprise
Batch Processing With
Jakarta Batch

Power Up Your Jakarta EE User Guide

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

Guide Updated: April 2024Contents

Introduction 3

Jakarta Batch 3

Batch Job 3

Step 5

Chunk 5

Reader 6

Processor 6

Writer 7

Configuring the Chunk: Size Matters 8

Error Handling in Chunks 8

Retrying After Failures 9

Checkpointing for Consistency 9

Optimizing Performance 10

Task-Oriented Processing with Batchlets 10

Introducing Batchlets 10

Defining a Batchlet 10

Monitoring Batch Jobs 11

Job Operator API 11

Listeners 12

Metrics 14

Managing the Lifecycle of Batch Jobs 15

Exception Handling 15

Job Restartability 15

State Management 15

Understanding Checkpoints 15

When Custom Checkpointing is Necessary 16

Implementing Custom Checkpoints 16

Important Considerations 17

Transaction Management in Jakarta Batch 17

Key Optimization Techniques 18

Practical Example 18

Summary	 19

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

3

Introduction

Batch processing is an integral part of enterprise applications, as such runtimes can support reading,
processing and storing large volumes of data. For example, inventory processing, payroll, report
generation, invoice/statement generation, data migration and data conversion are all tasks that can
benefit from batch processing.

Batch processing typically involves the division of data loads into smaller "chunks," which are sub-
sequently broken down into even smaller units. Through this systematic approach, each unit of data
is processed individually, without requiring human intervention. facilitating streamlined execution
of batch processing tasks.

As a result, the handling of significantly large volumes of data is streamlined, improving efficiency
and speed. Batch processing can also be parallelized to take advantage of the hardware capabilities
of the underlying computer. This quick guide will show you how to create batch processing tasks on
the Jakarta EE Platform. By the end of the document, you will have a solid foundation in using the
Jakarta Batch specification to create all kinds of batch jobs.

Jakarta Batch

On the Jakarta EE platform, Jakarta Batch is the standard specification for creating any batch pro-
cessing tasks, whether they are simple or highly sophisticated. To create a batch job, you should
first understand how Jakarta Batch is structured. Let's start by looking at the various components.

Batch Job
A batch job in Jakarta Batch is an encompassing instruction that contains everything to run a given
batch task. For instance, the task for a bank may be sending account statements to clients at the
end of every week. This task can be encapsulated, or described in a Jakarta Batch job. This job
will have a name, e.g. MailClientStatements, the steps needed to get the job done, whether some
exceptions should be skipped, any listeners, job level properties and anything that the job needs to
run. Remember a typical batch job runs end-to-end with no human intervention. This means that a
job should describe in advance everything that the given batch job will need.

A batch job is described in XML using the Jakarta Job Specification Language. The MailClientStatements
job can be described as in the following XML file.

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

4

<?xml version="1.0" encoding="UTF-8"?>

<job id="mail-client-statements" xmlns="https://jakarta.ee/xml/ns/jakartaee"

 version="2.0">

 <properties>

 <property name="propertyName" value="propertyValue"/>

 <property name="anotherProperty" value="anotherValue"/>

 <property name="defaultFileType" value="pdf"/>

 </properties>

 <listeners>

 <listener ref="jobLevelListener"></listener>

 </listeners>

 <step id="computeBalance" next="createFile">

 <properties>

 <property name="firstStepProperty" value="firstStepValue"/>

 </properties>

 <listeners>

 <listener ref="firstStepListener"></listener>

 </listeners>

 <chunk>

 <reader ref="myReader"></reader>

 <processor ref="myProcessor"></processor>

 <writer ref="myWriter"></writer>

 </chunk>

 </step>

 <step id="createFile">

 <batchlet ref="myBatchlet"></batchlet>

 </step>

 <step id="mailStatement">

 <batchlet ref="mailerBatchlet"></batchlet>

 <end on="COMPPLETED"/>

 </step>

</job>

A job descriptor, as shown above, is first identified by an id. In this example, this is mail-client-state-
ments. This is the unique ID of the job across all other batch jobs. The XML file can be called anything.
But the convention is to call the file by the name of the job, so in this case, the XML file containing

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

5

the above job descriptor is in a file called mail-client-statements.xml. For applications packaged
as WAR files, the job descriptor files are found under WEB-INF/classes/META-INF/batch-jobs and
META-INF/batch-jobs for applications packaged as JAR files.

A job can have job-level or global properties that will be available to all units specified in the job.
In the above example, the job-level properties element defines three properties, propertyName,
anotherProperty and defaultFileType. These will be available to all specified units of the job. A batch
job will be carried out primarily as a collection of one or more steps, each carrying out an atomic
unit of the larger job.

Step

A step is a logical unit of work in a job. A step can be any self-contained unit of work that should be
carried out as part of the larger job. In our mail customer statement job example, a given step can
be one where client balances are computed on a specified date. Another step can be reading the
customer statement for a given period and converting it to a PDF file. Yet another step can be taking
the created file in the previous step and mailing it to the customer. Another auxiliary step could be
reading the same PDF file and uploading to some document storage service.

All these steps are self-contained units of work that can be described separately in a batch job. A
step must have an ID and, optionally, a next attribute that specifies which step comes after the exe-
cution of the current step. A step can also have properties, which will be scoped just to artefacts in
that step. A step can also have step specific listeners, which again, will be scoped to that particular
step. The mail customer statement job above has three steps - computeBalance, createFile and
mailStatement steps.

The computeBalance step has its next set to createFile. This means that when the execution of the
computeBalance is completed, the batch runtime will traverse to executing the createFile step. The
computeBalance step defines its own property, called firstStepProperty, with the value firstStepValue.
This property will only be available to artefacts in this step. The step also defines a listener, called
firstStepListner. For the actual processing of carrying out the unit of a job in a step, a step can have
either a chunk or a task.

Chunk

A chunk is one of two atomic units of work that can be carried out within a step. The other one is a
task (covered later). A chunk specifies a unit of work that can be carried out on a given number of
items. Remember a batch job, at its most atomic level, processes batch items one at a time. A chunk
is used to specify the two required, and one optional operation that can be carried out on a single
item in the batch processing. These are reader, writer and optionally, processor. The computeBal-
ance step in the mail client statement batch description above has a chunk that specifies all three
operations. A chunk can have a number of attributes that configure how the batch runtime manages
each instance of the chunk. For now, let's look at the three operations that can be carried out in a
chunk, starting with the reader.

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

6

Reader

A reader, in Jakarta Batch, is a Java class that implements the jakarta.batch.api.chunk.ItemReader
interface. This interface has four methods that must be implemented. However, if the given batch job
does not need all four methods, the reader can extend the jakarta.batch.api.chunk.AbstractItemReader
class, which has empty placeholder implementations for three of the methods. By extending this
class, a given reader will only have to implement the readItem() method from the ItemReader inter-
face. The MyReader class for the mail client statement batch is shown below.

@Named

public class MyReader extends AbstractItemReader {

 @Override

 public Object readItem() throws Exception {

 return null;

 }

}

The @Named Jakarta CDI qualifier makes this class available for reference in the Expression Language
used to define the batch job. By default, without specifying any name, the @Named annotation makes
the annotated class available in the EL space as myReader, as used in the job description above. The
readItem method is used to read a unit of whatever data that is being processed. In our mail client
statement batch job, the reader can be used to read the client statement for each client. A reader
reads a single item, one at a time. By default, the method returns java.lang.Object. You can change
this to any concrete Java type in your application.

The reader can be implemented to read the batch items from anywhere - databases, files (JSON, XML
etc and transformed), other modules or microservices as well as externally from another system.
The batch runtime doesn't really prescribe where the data will come from. It only specifies that an
item should be returned. It will keep calling the readItem method, as long as the method returns a
non-null value. A null value signals the end of items to read to the batch runtime, indicating there is
no longer the need to call the reader to read anything.

Where does the returned item go, you ask? Depending on how you configured your chunk, it can go
to the processor, or straight to the writer. In the mail client statement job, it goes to the processor.

Processor

A processor in Jakarta Batch is a Java class that implements the jakarta.batch.api.chunk.
ItemProcessor. This interface has a single method, processItem(Object item), that takes the item
returned from the reader. Remember the reader returns one batch item at a time. This item is

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

7

automatically passed as a parameter to the processItem method. This method can then do any kind
of business-specific processing on the returned item. In our mail client statements batch job, for
example, the processor can compute the balance of a client based on the client account received.
This balance can be based on a specific date range.

Jakarta Batch leaves the actual details of how a given item is processed to your business domain.
All it does is take the item from the reader and hand it over to your processor for processing. The
MyProcessor class for the mail client statement batch job description is shown below.

@Named

public class MyProcessor implements ItemProcessor {

 @Override

 public Object processItem(Object item) throws Exception {

 return null;

 }

}

Similar to the reader, the processor also returns a unit of the processed item. As stated above, the
processor is free to "process" the received item from the reader according to the business domain.
Also, like the reader, the processor can return null to signify to the batch runtime that the given item
as received from the reader should not be part of the next steps of the batch processing. This allows
the processor to filter out items according to the business domain requirements.

For instance, the mail client statement batch processor can filter out client accounts that have not
had any banking transaction in the last six months. The processor can return null for a received client
account that falls within that category. Alternatively, the processor can return a File object for each
client with transactions on their account in the last three months, returning null for clients that didn't
have any. Where does the returned item from the processor go? It goes to the writer.

Writer

A writer in Jakarta Batch is any Java class that implements the jakarta.batch.api.chunk.ItemWriter
interface. This interface, similar to the ItemReader interface, has four methods. But for brevity, a
writer can extend the jakarta.batch.api.chunk.AbstractItemWriter class instead. This class only
requires the implementation of the writeItems(List<Object>items) method. The MyWriter used in
the mail client statement batch description is shown below.

@Named

public class MyWriter extends AbstractItemWriter {

 @Override

 public void writeItems(List<Object> items) throws Exception {

 }

}

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

8

The writeItems method takes a list of objects. These objects represent a collection of the concrete
Java type passed from the reader to the processor and ultimately to the writer. But why does the
writeItem method take a list? The batch runtime is designed to read a single item, process it and then
collect all the items into a list up to a predefined count. When this count is hit, the list is passed to the
writer. This list could be empty if the processor filters out all items, though this is not very common.

The writer can do different types of “writing” activities within the given business context. In the mail
client statement, if the processor returns a File object for each processed client, the writer receives
a collection of Files for "writing," which could mean uploading said files to a given storage area.

Configuring the Chunk: Size Matters

One of the critical configurations of a chunk is its size, as this determines how many items the batch
job processes before sending them to the writer. It's essential to understand that the right chunk
size can significantly impact the performance of your batch job. If the size is too small, you could
encounter inefficient use of computing resources. If it's too large, memory constraints or transaction
timeouts could become a problem.

The following XML snippet illustrates how you might specify a chunk size in your job XML:

<chunk checkpoint-policy="item" item-count="100">

 <reader ref="myItemReader" />

 <processor ref="myItemProcessor" />

 <writer ref="myItemWriter" />

</chunk>

In this example, item-count="100" specifies that the job processes 100 items before invoking the
writer. Knowing the ideal chunk size comes down to you measuring and finding out the average item
number to expect, based on your workload.

Error Handling in Chunks

Error handling is another crucial aspect of chunk configuration. In batch processing, it's not uncom-
mon to encounter a situation where a particular item fails to process due to a data issue or a transient
system error. Jakarta Batch provides mechanisms to handle such errors gracefully.

You can specify a skippable-exception-classes element in the chunk to define which exceptions
should not cause the job to fail but rather skip the problematic item:

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

9

<chunk>

 <skippable-exception-classes>

 <include class="jakarta.persistence.NoResultException"/>

 </skippable-exception-classes>

</chunk>

In this setup, if a NoResultException is thrown, the item is skipped, and the job continues, processing
the next item.

Retrying After Failures

Sometimes, failures are not due to the item itself but rather temporary issues, like a network outage.
Jakarta Batch allows for retrying such items:

<chunk>

 <retryable-exception-classes>

 <include class="java.net.SocketTimeoutException"/>

 </retryable-exception-classes>

</chunk>

Here, if a SocketTimeoutException occurs, the job will retry processing the item before deciding if
it can't be processed.

Checkpointing for Consistency

Checkpointing is a strategy to ensure that a job can recover from a failure without having to start
over from the beginning. By default, the checkpoint occurs after each chunk (defined by the `item-
count`). However, you can also use a custom checkpoint policy if your business logic requires it:

<chunk checkpoint-policy="custom" item-count="100">

</chunk>

This level of control can be crucial when dealing with large datasets, where restarting a job from the
beginning can be time- and resource-intensive.

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

10

Optimizing Performance

Consider the transactional behavior and the impact on performance. Using a persistent step-scoped
or job-scoped data repository can minimize transaction times and optimize the performance of your
batch job.

For instance, using an in-memory database for intermediate processing steps can drastically reduce
the I/O time, making the chunk processing much faster.

Task-Oriented Processing with Batchlets

Up until now, our focus has been on chunks, which are ideal for iterative processing of datasets using
the read-process-write pattern. However, batch processing is not always about dealing with large
volumes of data that need to be processed in an iterative manner. Sometimes, the requirement is to
perform a one-off task that doesn't fit into the chunk model. This is where the concept of a batchlet
becomes crucial.

Introducing Batchlets

A batchlet is a specialized component within the Jakarta Batch framework designed for tasks that
require a single execution step. It is a Java class that implements the jakarta.batch.api.Batchlet
interface and is particularly suited for non-iterative operations, such as performing clean-up, exe-
cuting a standalone script or initiating a single data migration task.

Defining a Batchlet

In the context of a batch job, you define a batchlet operation as a step in your job XML. Here's how
you can declare a batchlet-based task:

<step id="cleanupResources">

 <batchlet ref="myResourceCleanupBatchlet"/>

</step>

In this example, myResourceCleanupBatchlet would be a Java class like the following that imple-
ments the Batchlet interface, which is tasked with executing the cleanup when this step is run.

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

11

@Named("myResourceCleanupBatchlet")

public class ResourceCleanupBatchlet implements Batchlet {

 @Override

 public String process() throws Exception {

 // Logic to clean up resources

 System.out.println("Cleaning up temporary files...");

 // ... (code to delete temporary files)

 System.out.println("Closing database connections...");

 // ... (code to close database connections)

 return "COMPLETED"; // Or "FAILED" if there were errors

 }

 @Override

 public void stop() throws Exception {

 // Optional. Add additional cleanup actions during cancellation

 }

}

Monitoring Batch Jobs
To ensure that your batch jobs run smoothly, effective monitoring is essential. Jakarta Batch offers
several tools to keep track of job execution.

Job Operator API

The Job Operator API is a powerful feature that allows you to control the batch job lifecycle program-
matically. With it, you can start, stop and restart jobs, as well as inquire about their current statuses.
This API can be seamlessly integrated with your application's monitoring systems, providing high
levels of control and visibility. For example, the JobOperator could be used as follows:

JobOperator jobOperator = BatchRuntime.getJobOperator();

long executionId = jobOperator.start("myBatchJob", null); // Start the job

JobExecution jobExecution = jobOperator.getJobExecution(executionId);

System.out.println("Job Status: " + jobExecution.getBatchStatus());

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

12

Listeners

Jakarta Batch listeners provide a way to hook into various events throughout the lifecycle of a job or
step. They enable you to capture vital information, trigger actions or integrate with external moni-
toring systems. Jakarta Batch provides several types of listeners.

Types of Listeners

•	 Job Listeners: Receive notifications of job-level events (before and after job execution,
on job failure etc.).

•	 Step Listeners: Respond to events within a step (before and after a step, on step fail-
ure etc.).

•	 Reader Listeners: React to events related to the ItemReader (before and after read, on
read error).

•	 Processor Listeners: Similar to reader listeners, but for the ItemProcessor.
•	 Writer Listeners: Receive event notifications for the ItemWriter.

Implementing Custom Listeners

To create a custom listener, you implement one or more of the listener interfaces from the jakarta.
batch.api.listener package. For example, a job listener:

public class MyJobListener implements JobListener {

 @Override

 public void beforeJob() throws Exception {

 // Logic to perform before job starts

 }

 @Override

 public void afterJob() throws Exception {

 // Logic to perform after job completes

 }

}

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

13

Attaching Listeners to Jobs and Steps

You associate your listeners with a job or step in your job XML:

<job ...>

 <listeners>

 <listener ref="myJobListener" />

 <listener ref="myStepListener" />

 </listeners>

 ...

</job>

Advanced Use Cases

Let's look at some use cases for advanced listener techniques.

Detailed Auditing and Logging:

public class AuditStepListener implements StepListener {

 @Override

 public void beforeStep() throws Exception {

 logger.info("Step {} starting...", stepContext.getStepName());

 }

 @Override

 public void afterStep() throws Exception {

 logger.info("Step {} completed, items processed: {}",

 stepContext.getStepName(), stepContext.getMetrics().

getReadCount());

 }

}

Error Notifications and Retries:

public class ErrorNotificationListener implements WriteListener {
 @Override
 public void onWriteError(Exception ex) throws Exception {
 if (isRetryableError(ex)) {
 retryService.scheduleRetry(failedItems);
 } else {
 notificationService.sendFailureAlert(ex);
 }
 }

}

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

14

Integration with Monitoring Systems:

public class MetricsListener implements JobListener {

 @Inject

 private MetricsService metricsService;

 @Override

 public void afterJob() throws Exception {

 metricsService.recordJobExecution(jobContext.getJobName(), jobContext.

getExitStatus());

 }

}

Important Considerations

•	 Performance: Design listeners to be efficient. Avoid heavy processing that might slow
down the batch job.

•	 Error Handling: Implement robust error handling within your listeners to prevent failures
in the monitoring logic from disrupting the job.

•	 Contextual Information: Listeners have access to rich metadata via JobContext and
StepContext objects. These can offer valuable insights into job state and execu-
tion metrics.

Metrics

Jakarta Batch provides built-in metrics that provide an overview of your batch jobs’ performance.
These metrics track data such as the number of items processed, skipped, or retried. They can be
accessed as follow:

JMX (Java Management Extensions): If you have a JMX-compatible monitoring tool, you can config-
ure your application runtime like Payara Server to expose Jakarta Batch metrics through JMX. This
allows you to integrate the metrics with your monitoring dashboards.

JobOperator jobOperator = BatchRuntime.getJobOperator();

long executionId = ...; // Get the execution ID of the job

JobExecution jobExecution = jobOperator.getJobExecution(executionId);

List<StepExecution> stepExecutions = jobExecution.getStepExecutions();

for (StepExecution stepExecution : stepExecutions) {

 for (Metric metric : stepExecution.getMetrics()) {

 System.out.println(stepExecution.getStepName() + " - " + metric.

getType() + ": " + metric.getValue());

 }

}

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

15

The common metric types available out of the box are:

•	 READ_COUNT: The total number of records read.
•	 WRITE_COUNT: The total number of records written.
•	 COMMIT_COUNT: The number of transaction commits.
•	 ROLLBACK_COUNT: The number of transaction rollbacks.
•	 READ_SKIP_COUNT: The number of records skipped during the reading process.
•	 WRITE_SKIP_COUNT: The number of records skipped during the writing process.

Managing the Lifecycle of Batch Jobs
Beyond starting and monitoring, effectively managing a batch job's lifecycle includes robust excep-
tion handling, job restart capabilities and state management.

Exception Handling

Jakarta Batch allows for fine-grained control over how your jobs handle exceptions. By specifying
which exceptions should prompt a job to stop or cause a rollback, you can ensure that your batch
jobs are resilient in the face of unexpected conditions.

Job Restartability

Making jobs restartable is particularly beneficial for long-running processes. If a job fails, it can
be restarted from the last successful checkpoint rather than from the beginning, saving time and
resources. You can enable this feature by setting the restartable attribute in the job XML:

<job id="myLongRunningJob" restartable="true">

</job>

State Management
Maintaining the state across job executions is very important, especially when jobs are interrupted
or deal with partial processing. Jakarta Batch provides execution contexts that can persist state
information, allowing for continuity when a job is restarted.

Understanding Checkpoints

By default, checkpoints occur in Jakarta Batch after each chunk (determined by the item-count).
However, for particularly complex or long-running jobs, this automatic checkpointing may not always
be the most optimal or robust strategy. This is where custom checkpoints come into play.

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

16

When Custom Checkpointing is Necessary

Consider these scenarios where a custom checkpoint policy might be beneficial:

•	 Large Chunk Sizes: If your chunks process huge datasets, the automatic checkpoint
after each chunk might lead to excessive overhead or performance issues due to the
serialization of state.

•	 Non-Idempotent Operations: When processing steps cannot be safely repeated without
side effects, a custom checkpoint allows more granular control over exactly when the
state is saved.

•	 Fine-Grained Recovery: In case of unexpected job interruptions, custom check-
points give you greater flexibility to resume precisely where the job failed, minimizing
wasted processing.

Implementing Custom Checkpoints

You'll need to implement a Java class extending the jakarta.batch.api.checkpoint.CheckpointAlgorithm
interface. The primary method to override is isCheckpoint(), where you'll define the logic determining
when a checkpoint should occur.

A custom algorithm can implement checkpoints based on a specific time interval or after successfully
processing a defined number of records.

In your job XML, modify the chunk element to reference your custom algorithm:

<chunk checkpoint-policy="custom">

 <checkpoint-algorithm ref="timeBasedCheckpointAlgorithm"/>

 ...

</chunk>

public class TimeBasedCheckpointAlgorithm implements CheckpointAlgorithm {

 @Inject

 private JobContext jobContext;

 private long checkpointInterval;

 private long lastCheckpointTime;

 @Override

 public boolean isCheckpoint() throws Exception {

 if (checkpointInterval == 0) { // Initialize on first call

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

17

 checkpointInterval = Long.parseLong(jobContext.getProperties().

getProperty("checkpointInterval"));

 lastCheckpointTime = System.currentTimeMillis();

 }

 long currentTime = System.currentTimeMillis();

 if (currentTime - lastCheckpointTime >= checkpointInterval) {

 lastCheckpointTime = currentTime;

 return true;

 } else {

 return false;

 }

 }

}

In this example, the algorithm checks if the elapsed time since the last checkpoint exceeds a con-
figurable interval (checkpointInterval in job properties).

Important Considerations

•	 Performance Overhead: Design custom checkpoint algorithms carefully to avoid
excessive overhead—the more frequent the checkpoints, the more performance can
be affected.

•	 State Persistence: Ensure that the job context information you need for restarts is being
serialized and persisted correctly.

•	 Balance: Strike a balance between checkpoint frequency and the cost of job restarts in
the event of failures.

Transaction Management in Jakarta Batch
Before we dive into advanced optimization in Jakarta Batch, let's do a quick recap on how transac-
tions work in Jakarta Batch:

•	 Implicit Transaction Scope: Each chunk or batchlet execution implicitly runs within its
own transaction. These transactions are typically container-managed, e.g. JTA transac-
tions if you are running within an application server.

•	 Commit/Rollback: The batch runtime commits the transaction at the end of a success-
ful chunk or batchlet step. If an exception occurs, the transaction is rolled back.

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

18

Key Optimization Techniques

1.  Transaction Boundaries:

•	 Carefully consider whether each chunk or batchlet truly requires its own transaction.
Analyze if steps can be logically grouped to reduce individual transaction overhead.

•	 For read-heavy steps, explore alternatives like read-only transactions or relaxing trans-
action isolation levels if your business logic permits.

2.	 Batching Writes:

•	 Accumulate changes within a step and perform database writes in batches instead of
individual operations. This significantly reduces transaction-related overheads.

•	 Be mindful of batch sizes. Excessively large batches can strain memory or lead to trans-
action timeouts.

3.	 Asynchronous Operations:

•	 If possible, offload non-critical updates or operations to asynchronous processes out-
side of the core batch job transactions. This shortens the duration of your main transac-
tions, reducing the chance of timeouts while improving commit performance.

4.	 Data Source Configuration:

•	 Tune connection pools and database settings for optimal performance under high load.
•	 Consider database-specific optimizations, like bulk inserts or optimized index-

ing strategies.

5.	 Parallel Processing:

•	 Use Jakarta Batch's partitioning capabilities to split your workload across multiple
threads or instances. These can distribute the transactional load and improve overall
throughput, but they require careful coordination if data consistency is crucial.

Practical Example

Let's imagine a batch job that processes bank transactions. Here's an optimization approach:

•	 Batching: Instead of updating account balances with each transaction, accumulate
changes in memory and flush them periodically in batches of 500 or 1000 updates.

•	 Asynchronous Logging: Send audit logs to a message queue for asynchronous process-
ing, rather than including them in the main transaction.

•	 Partitioning: If the workload is sizeable, partition by account number ranges to run mul-
tiple workers in parallel.

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

19

Important Considerations

•	 Business Logic: Transaction boundaries must align with your business requirements for
data integrity and consistency.

•	 Error Handling: Design robust error-handling mechanisms with retries and back-off
strategies to handle transient failures without compromising the entire transaction.

•	 Monitoring: Measure transaction durations, commit/rollback rates and potential bottle-
necks. Use these metrics to guide your optimization decisions.

Additional Tips

•	 Database Choice: For extremely high-volume scenarios, consider NoSQL databases or
specialized data stores optimized for fast writes and scale-out capabilities.

•	 In-Memory Caches: Utilize caches, if feasible, to reduce database read load.

Summary

Throughout this guide, we've seen how Jakarta Batch simplifies the development of batch applica-
tions within the Jakarta EE environment. Key advantages include:

•	 Standardization: Jakarta Batch offers a well-defined specification for batch processing,
promoting portability and maintainability of your batch jobs.

•	 Flexibility: From simple batchlets to complex, multi-step jobs, Jakarta Batch provides
the components to model a wide range of batch processing scenarios.

•	 Resilience: Features like retries, exception handling and checkpoints help you build
robust batch jobs that gracefully handle unexpected situations.

•	 Monitoring: Built-in metrics and integration with JMX provide visibility into your batch
jobs' performance.

If you're ready to take your batch processing to the next level, start experimenting with Jakarta
Batch by downloading Payara Community. The power to streamline and optimize your background
workloads is at your fingertips! Happy Coding!

https://www.payara.fish/downloads/payara-platform-community-edition/

A Quick Guide To Enterprise Batch Processing With Jakarta Batch

20

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2024 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

PAYARA SERVER
FREE TRIAL

PAYARA CLOUD
FREE TRIAL

Interested in Payara? Try Before You Buy

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/page/free-trials/
https://www.payara.fish/page/payara-enterprise-downloads/
https://manage.payara.cloud/

	Introduction
	Jakarta Batch
	Batch Job
	Step
	Chunk
	Reader
	Processor
	Writer
	Configuring the Chunk: Size Matters
	Error Handling in Chunks
	Retrying After Failures
	Checkpointing for Consistency
	Optimizing Performance
	Task-Oriented Processing with Batchlets
	Introducing Batchlets
	Defining a Batchlet

	Monitoring Batch Jobs
	Job Operator API
	Listeners
	Metrics

	Managing the Lifecycle of Batch Jobs
	Exception Handling
	Job Restartability

	State Management
	Understanding Checkpoints
	When Custom Checkpointing is Necessary
	Implementing Custom Checkpoints
	Important Considerations

	Transaction Management in Jakarta Batch
	Key Optimization Techniques
	Practical Example

	Summary

