
A Developer Guide To
WebSocket Development On
The Jakarta EE Platform

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. User Guide

A Developer Guide To WebSocket Development On The Jakarta EE Platform

Contents

Jakarta EE Websocket 1

Programmatic WebSocket Endpoints 1

Annotation Endpoints 3

Sending Messages 4

Sending Messages Asynchronously 5

Custom Message Types 5

Encoders 5

Decoders 7

Configuration 9

Handling Errors 10

WebSocket Client 11

Connecting To WebSocket 12

Summary 13

A Developer Guide To WebSocket Development On The Jakarta EE Platform

1

Digital transformation, largely enabled by the commoditization of massive compute resources by
cloud computing vendors has changed the way applications are developed, deployed and main-
tained. It has allowed for much faster application development iterations by organisations to meet
ever changing and increasingly complex customer expectations.

The customised, real-time digital experiences pioneered by the likes of Amazon and Netflix has cre-
ated a defacto standard of customer experience that all organisations aspire to to acquire and keep
customers. One technology that can enhance the customer experience in applications is WebSockets.

WebSocket is a HTTP communication protocol that allows real-time full duplex interaction between
a set of clients and a given server. A single WebSocket server can accept N number of client con-
nections. Both the clients and the server can independently send messages to each other at any
time during the connection. WebSocket allows the pushing of updates to connected clients without
the clients having to explicitly poll the server. This way, web socket applications deliver enhanced
digital experiences to users.

This guide looks at how to develop WebSocket applications on the Jakarta EE Platform using the
WebSocket Specification. It starts by looking at the two main ways of creating WebSocket endpoints,
then continues to show how to create endpoints using both approaches. It then proceeds to show
the three kinds of messages supported out of the box and how to create custom message types using
encoders and decoders. The guide then shows how to configure your WebSocket application and
finally a brief look at the WebSocket client API. By the end of this guide, you will be able to create
WebSocket applications on the Jakarta EE Platform using the WebSockets API.

Jakarta EE Websocket

There are two main ways of creating WebSocket endpoints using the Websocket API on the Jakarta
EE Platform. One is programmatically by extending an abstract class and implementing its methods.
The other is through annotations to describe the endpoint and callback methods. Let us start with
the programmatic WebSocket endpoint declaration.

Programmatic WebSocket Endpoints
Creating a programmatic WebSocket endpoint entails extending the jakarta.websocket.Endpoint and
implementing the onOpen abstract method as shown below.

2

public class ProgrammaticSockets extends Endpoint {

 @Override
 public void onOpen(final Session session, final EndpointConfig config)
{

 }

 @Override
 public void onClose(final Session session, final CloseReason
closeReason) {
 System.err.println("Closing: " + closeReason.getReasonPhrase());
 }

 @Override
 public void onError(final Session session, final Throwable thr) {
 System.err.println("Error: " + thr.getLocalizedMessage());
 }

}

The ProgrammaticSockets class extends the Endpoint abstract class and implements the methods
onOpen, onClose and onError (we discuss the other two later). Of these three, only the onOpen method
must be implemented by your code. The onOpen method is called when a WebSocket connection is
established with a client. The method is passed a jakarta.websocket.Session and jakarta.websocket.
EndpointConfig objects.

The Session object has methods about the remote connecting client. One of these methods allows
registration of interest in receiving messages sent by the remote client. The code below shows
registration of interest in receiving text messages sent by the remote connecting client within the
onOpen method using the passed Session object.

session.addMessageHandler((MessageHandler.Whole<String>) message -> {

 try {

//Forward to single, current session

session.getBasicRemote().sendText(message);

 } catch (final IOException ex) {

 Logger.getLogger(ProgrammaticSockets.class.getName()).log(Level.SEVERE,

null, ex);

 }

});

Options for Serverless in Java

A Developer Guide To WebSocket Development On The Jakarta EE Platform

3

The addMessageHandler method of the Session object takes a jakarta.websocket.MessageHandler
interface object. As shown above, we use the lambda function to shorten the code. The passed in
message variable is the message sent by the client. The sub interface MessageHandler.Whole is
parametrized to take a type. In the above example, the type String is passed in, which means this
code is registering its interest in receiving basic text or String messages sent by the remote client.
The other types of messages that can be registered for are java.nio.ByteBuffer and jakarta.websocket.
PongMessage.

Annotation Endpoints
The second way you can create WebSocket endpoints is through annotations. You annotate a Java
class with the respective annotations, and the WebSocket implementation automatically picks it
up. The code below shows the creation of a WebSocket endpoint hosted at the path “/annotated”.

@ServerEndpoint(value = "/annotated")

public class AnnotatedSockets {

 @OnOpen

 public void onOpen(final Session session) {

 }

 @OnMessage

 public void handleTextMessage(final Session session, final String message)

{

 }

 @OnMessage

 public void handleBinaryMessage(final Session session, final ByteBuffer

message) {

 }

 @OnMessage

 public void handlePongMessage(final Session session, final PongMessage

message) {

 }

}

A Developer Guide To WebSocket Development On The Jakarta EE Platform

4

The AnnotatedSockets class is a Java class annotated @ServerEndpoint(value = "/annotated"). The
parameter passed to the annotation is the endpoint at which this WebSocket will be hosted. The
method onOpen is annotated with @OnOpen. This method is equivalent to the onOpen method of
the programmatic endpoint class looked at in the previous section. This one however, takes only the
Session as the parameter. The other three methods each have the @OnMessage annotation. This
annotation marks each method as a callback listener when the respective message type is received.

Sending Messages
The server can send, or push messages to the connected client by calling the sendXXX method on
the jakarta.websocket.RemoteEndpoint.Basic object returned by calling the getBasicRemote method
on the Session. The code below shows sending of text and binary messages to the remote client.

@OnMessage

public void handleTextMessage(final Session session, final String message) {

 try {

 session.getBasicRemote().sendText(message);

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

}

@OnMessage

public void handleBinaryMessage(final Session session, final ByteBuffer

message) {

 try {

 session.getBasicRemote().sendBinary(message);

 } catch (final IOException ex) {

 Logger.getLogger(ProgrammaticSockets.class.getName()).log(Level.SEVERE,

null, ex);

 }

}

A Developer Guide To WebSocket Development On The Jakarta EE Platform

5

Sending Messages Asynchronously

The above calls to sendXXX are both blocking calls. This means execution will stall until they return.
The Session interface has the getAsyncRemote method that returns a RemoteEndpoint.Asyc object.
The Async object has the same sendXXX methods for sending the same types of messages. The code
below shows sending text and binary messages asynchronously.

@OnMessage

 public void handleTextMessage(final Session session, final String message)

{

 session.getAsyncRemote().sendText(message);

 }

 @OnMessage

 public void handleBinaryMessage(final Session session, final ByteBuffer

message) {

 session.getAsyncRemote().sendBinary(message);

 }

Custom Message Types
By default, there are three kinds of messages that can be sent to and received from WebSocket clients
from a Jakarta EE application. They are text, binary and PongMessage. In a real world production
application, these three may not suffice. You can create your own custom message types to be sent
and received from the client through encoders and decoders.

Encoders

An encoder is a class that takes a Java type and converts it to either plain text, a text stream, a
binary or binary stream to be sent to a WebSocket client. Through encoders, you can create custom
message types that can be sent to and from connecting clients. To create a WebSocket encoder, you
extend the jakarta.websocket.Encoder interface, specifying the sub interface corresponding to one
of the message types. The code below shows a text encoder for custom Java class.

A Developer Guide To WebSocket Development On The Jakarta EE Platform

6

public class CustomTextEncoder implements Encoder.Text<BusinessData> {

 private Jsonb jsonb;

 @Override

 public void init(final EndpointConfig config) {

 if (jsonb == null) {

 try (final Jsonb json = JsonbBuilder.create()) {

 jsonb = json;

 } catch (final Exception ex) {

 Logger.getLogger(CustomTextEncoder.class.getName()).log(Level.

SEVERE, null, ex);

 }

 }

 }

 @Override

 public String encode(final BusinessData object) throws EncodeException {

 if (object != null) {

 return jsonb.toJson(object);

 }

 return null;

 }

}

The CustomTextEncoder class implements the Encoder.Text interface, signalling that this encoder
will take the passed Java type, in this case BusinessData and convert it to a string. The WebSocket
runtime doesn’t care about the actual implementation. The Encoder interface has the encode method
which must be implemented. In the above sample, we use the Jakarta JSON Binding API to convert
the passed instance of the BusinessData in the encode method to a json string. The init method has a
default implementation that you can override should you have any custom initialisation to carry out.
In the above example, we create the Jsonb object to be used to convert the object to a json string.
The BusinessData Java class is shown below with getters and setters omitted for brevity.

A Developer Guide To WebSocket Development On The Jakarta EE Platform

7

public class BusinessData implements Serializable {

 private String messageId;

 private BigDecimal contractAmount;

 private String clientId;

 private LocalDate contractValidFrom;

}

The Encoder interface as stated earlier, has sub interfaces for encoding text stream, binary and
binary stream. The only difference between them is the return type of the encode methods. Each
one returns the corresponding type.

Registering Encoders

With the encoder in place, we need to register it with the runtime. There are two ways of registering
encoders, depending on how you create the WebSocket endpoint. If you use annotations to create
the WebSocket, then the @ServerEndpoint annotation has the encoders parameter, which takes an
array of encoder classes. The code below shows registering the CustomTextEncoder implementation
discussed above in the @ServerEndpoint annotation.

@ServerEndpoint(value = "/annotated-custom",

encoders = { CustomTextEncoder.class }

)

We discuss registering encoders and decoders programmatically in a later section when we talk
about programmatic configuration. For now let us continue to look at how to create decoders.

Decoders

A decoder is a class that takes the message passed from the WebSocket client and converts it to
a Java type. A decoder is the opposite of an encoder. To create a decoder, implement the jakarta.
websocket.Decoder interface, specifying the specific sub interface that corresponds to the message
type to decode. The code below shows a text decoder that does the opposite of the encoder - take
a string and converting it to a Java type.

A Developer Guide To WebSocket Development On The Jakarta EE Platform

8

public class CustomTextDecoder implements Decoder.Text<BusinessData> {

 private Jsonb jsonb;

 private BusinessData businessData;

 @Override

 public void init(EndpointConfig config) {

 if (jsonb == null) {

 try (final Jsonb json = JsonbBuilder.create()) {

 jsonb = json;

 } catch (final Exception ex) {

 Logger.getLogger(CustomTextEncoder.class.getName()).log(Level.

SEVERE, null, ex);

 }

 }

 }

 @Override

 public BusinessData decode(final String s) throws DecodeException {

 return businessData;

 }

 @Override

 public boolean willDecode(final String s) {

 if (s != null && !s.isBlank()) {

 try {

 businessData = jsonb.fromJson(s, BusinessData.class);

 return true;

 } catch (final Exception ex) {

 Logger.getLogger(CustomTextDecoder.class.getName()).log(Level.

SEVERE, null, ex);

 }

 }

 return false;

 }

}

A Developer Guide To WebSocket Development On The Jakarta EE Platform

9

CustomTextDecoder implements the Decoder.Text interface, signalling it takes a text string and con-
verts it to the BusinessData java type. The decoder has an extra boolean method - willDecode. This
method first tests if this decoder can decode the specified type. The above implementation checks
if the passed string can indeed be converted back from JSON through the Jakarta JSON-B API. It
returns the right response based on how the conversion form string, which we expect to be JSON
as that is the message format the server sends to the client.The decode method simply returns the
already converted method. This decoder will not be put to service if the willDecode method returns
false.

Registering Decoders

Like encoders, decoders must be registered with the WebSocket runtime. For annotation end-
points, the @ServerEndpoint annotation has the decoders parameter that takes an array of decoder
implementations. The code below shows registration of the above implemented decoder through
the annotation.

@ServerEndpoint(value = "/annotated-custom",

 decoders = { CustomTextDecoder.class })

Configuration
A WebSocket application on the Jakarta EE Platform can be configured through an implementation
of the jakarta.websocket.server.ServerApplicationConfig interface. This interface has two methods
for configuring programmatic endpoints and for deciding which annotation endpoint to be deployed.
The code below shows an implementation that maps the ProgrammaticSockets looked at earlier to
the endpoint “/programmatic” and registers the CustomTextEncoder and CustomTextDecoder classes
as well.

A Developer Guide To WebSocket Development On The Jakarta EE Platform

10

public class WebsocketsConfig implements ServerApplicationConfig {

 @Override

 public Set<ServerEndpointConfig> getEndpointConfigs(Set<Class<? extends

Endpoint>> endpointClasses) {

 final var serverEndpointConfig =

 ServerEndpointConfig.Builder

 .create(ProgrammaticSockets.class, "/programmatic")

 .decoders(List.of(CustomTextDecoder.class))

 .encoders(List.of(CustomTextEncoder.class))

 .build();

 return Set.of(serverEndpointConfig);

 }

 @Override

 public Set<Class<?>> getAnnotatedEndpointClasses(Set<Class<?>> scanned) {

 return scanned;

 }

}

The getEndpointConfigs method takes a set of Endpoint classes and returns a set of
ServerEndpointConfig. Within the method, we use the builder on the ServerEndpointConfig to map
the programmatic WebSocket endpoint, register the decoder and encoder and finally build it. We
then return the build config as a set. The getAnnotatedEndpointClasses method takes a set of classes
that are all the annotated endpoint classes in the archive containing the implementation of this inter-
face. In the above implementation, we simply return the passed set because we want all annotated
endpoints deployed.

Handling Errors
Errors and exceptions are normal parts of software engineering. They’re inevitable in almost every
application. The WebSocket API provides an effortless way to handle errors that occur. Depending on
how you implement your endpoints, you can either use the annotation or programmatic routes to han-
dle errors. The following code shows how you can catch and handle errors in an annotated endpoint.

@OnError

public void handleError(final Session session, final Throwable throwable) {

System.err.println("Error: " + thr.getLocalizedMessage());

}

A Developer Guide To WebSocket Development On The Jakarta EE Platform

11

The handleError method takes a Session and a java.lang.Throwable object. It is annotated @OnError,
meaning it is called if there is any exception thrown during the client server interaction. The actual
implementation of the method is business specific. The WebSocket API gives you the callback to
use as per your application requirement. The following code shows error handling in a program-
matic endpoint.

@Override

public void onError(final Session session, final Throwable thr) {

 System.err.println("Error: " + thr.getLocalizedMessage());

}

Programmatic endpoints can override the onError method of the extended Endpoint abstract class.
The method gets passed the same parameters - a Session and Throwable objects. Again, the actual
implementation of the error handling is business specific. THe above snippets simply log the errors.

WebSocket Client
A WebSocket client is a Java class that is annotated with the @ClientEndpoint that declares WebSocket
lifecycle methods. You can think of the client as the other end of the server endpoints we have seen
so far. The code below shows a simple WebSocket client that sends the message sent from the
server back.

@ClientEndpoint

public class CustomWebsocketClient{

 @OnMessage

 public void handleTextMessage(final Session session, final String message)

{

 try {

 session.getBasicRemote().sendText(message);

 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }

}

A Developer Guide To WebSocket Development On The Jakarta EE Platform

12

CustomWebsocketClient is annotated @ClientEndpoint and has a method called handleTextMessage
that is annotated on message. When this client is deployed and connected to a server, this method
will be called and passed any text message the server sends.

Connecting To WebSocket
Connecting to a WebSocket server in Jakarta EE is very straightforward through the jakarta.web-
socket.WebSocketContainer. The code below shows how to connect to the /annotated endpoint path.

WebSocketContainer webSocketContainer = ContainerProvider.

getWebSocketContainer();

 String uri = "ws://localhost:8080/websocket/annotated";

 try {

 webSocketContainer.connectToServer(CustomWebsocketClient.class,

URI.create(uri));

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

The jakarta.websocket.ContainerProvider has the getWebSocketContainer that returns a jakarta.
websocket.WebSocketContainer object. We then create the URI to the WebSocket endpoint and pass
it together with the client discussed earlier to the connectToServer method. This simple call sets
up a connection between the client and the deployed endpoint. From then on, the communication
between the two is bidirectional and independent. So the server can push to the client, and the
client can push to the server.

A Developer Guide To WebSocket Development On The Jakarta EE Platform

13

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

Payara Services Ltd 2023 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Summary

This guide has introduced you to WebSocket development on the Jakarta EE Platform. We started
by looking at the two kinds of endpoints, then looked at sending messages and creating custom
message types through encoders and decoders. We then looked at configuration, handling errors,
WebSocket clients and how to connect to a WebSocket. It is my hope that through this quick guide,
you have the basis to explore further the full features of the WebSocket API. The specification is
quite easy to read and is one of the smallest specs on the platform. Look at it and start building rich
client experiences through the power of WebSockets!

If you enjoyed this guide, you might find these useful:

• The Complete Guide To JSON Processing On the Jakarta EE Platform
• A Business Guide To Cloud Deployment Options For Jakarta EE Applications
• A Developer Guide to NoSQL Persistence on The Jakarta EE Platform With Google Firestore

mailto:sales%40payara.fish?subject=
https://www.payara.fish
http://blog.payara.fish/introducing-payara-micro
https://www.payara.fish/resource/the-complete-guide-to-json-processing-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/a-business-guide-to-cloud-deployment-options-for-jakarta-ee-applications/
https://www.payara.fish/resource/a-developer-guide-to-nosql-persistence-on-the-jakarta-ee-platform-with-google-firestore/

	Jakarta EE Websocket
	Programmatic WebSocket Endpoints
	Annotation Endpoints
	Sending Messages
	Sending Messages Asynchronously

	Custom Message Types
	Encoders
	Decoders

	Configuration
	Handling Errors
	WebSocket Client
	Connecting To WebSocket

	Summary

