
A Developer Guide to NoSQL
Persistence on The Jakarta
EE Platform With Google
Firestore

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible. User Guide

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

Contents

The Theory Of Jakarta EE 1

What Is Jakarta EE? 1

What Is A Specification? 2

What Is A Compatible Implementation? 2

What Is Eclipse MicroProfile? 3

A Brief History Of NoSQL 4

The Origin of The NoSQL Name 5

The Rise of Schemaless Databases 5

Big Data And NoSQL 5

Advantages of NoSQL Database Systems 6

Flexible Data Models 6

Faster Queries 6

Scaling 6

Easier Developer Experience 6

Faster Application Iteration 6

Store Different Kinds Of Data 7

Types Of NoSQL 7

Graph Databases 7

Document Store 7

Key-Value 7

Wide-Column 8

Jakarta EE And Google Firestore 8

Set Up 8

The Firebase Maven Dependency 8

Producing The Firestore Object 9

CRUD With Firestore 10

Create 10

Reading Data 17

Updating Data 19

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

Deleting Data 19

Caveats 19

No Cascade Operation 20

Database Referential Integrity 20

Different Query Paradigm 20

Different Data Model 20

Summary 21

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

1

Digital transformation, largely enabled by the commoditization of massive compute resources by
cloud computing vendors has changed the way applications are developed, deployed and main-
tained. It has allowed for much faster application development iterations by organisations to meet
ever changing and increasingly complex customer expectations.

The customised digital experiences pioneered by the likes of Amazon and Netflix has created a
defacto standard of customer experience that all organisations aspire to in order to acquire and
maintain customers. The COVID-19 pandemic also created a paradigm shift to more digital economic
activities across the globe. Flowing from this transformation, is the vast amounts of data that are
collected by various service providers. These collected data need to be stored in durable data stores.

The Java Platform has always had excellent support for relational database management systems
(RDBMS) through the Java Database Connectivity (JDBC) API. The Jakarta EE Platform, hitherto
known as Java EE, also has excellent support for SQL through abstractions such as the Jakarta
Persistence API. With the rise in popularity of alternative data storage paradigms, enterprises have
more choices outside of the traditional SQL data format for structuring, analaying, storing and que-
rying application data.

This guide looks at using Jakarta EE with Firestore, the document NoSQL database from Google
Firebase. We start by looking at the theory of Jakarta EE, then a look at the history, advantages and
types of NoSQL databases, then how to set up Firestore in your Jakarta EE application, and then
finally how to store and retrieve Jakarta EE application data. By the end of this guide, you will have
a good grounding for practical exploration of Jakarta EE and NoSQL databases.

The Theory Of Jakarta EE

What Is Jakarta EE?
Jakarta EE is a set of community developed, abstract specifications that together form a platform for
developing end-to-end, multi-tier enterprise applications. Jakarta EE is built on the Java Standard
Edition, and aims to provide a stable, reliable and vendor neutral platform on which to develop cloud
native applications.

Hitherto, Jakarta EE was called Java EE and was a property of Oracle Inc., evolved through the Java
Community Process (JCP). However, in late 2017, Oracle decided to move the platform to an open
foundation for a much broader community-led evolution. The Eclipse Foundation got chosen and
Java EE, after the transfer, got rebranded to Jakarta EE.

2

What Is A Specification?

As stated in the above definition, Jakarta EE is made up of a set of specifications that each cover a
specific API for solving a specific software development need. For example, the Jakarta Contexts
and Dependency Injection (CDI) specification provides constructs for creating loosely coupled appli-
cations through dependency injection. These different specifications are combined into a single
“umbrella” specification for each Jakarta EE release. As such, Jakarta EE 10 for instance, is released
under the Jakarta EE 10 specification.

More technically, a specification is a formal proposal document made to the Jakarta EE Specification
Committee through the Jakarta EE Specification Process (JESP) that outlines the functions of a given
set of APIs. This document outlines what the expected behaviour should be for various invocations
of the API. The specification then acts as the blueprint for the API.

What Is A Compatible Implementation?

As a specification is merely a document that outlines the behaviour of a given API, it needs an
implementation that realises the actual outcomes for each invocation of the API. For instance,
the Jakarta Persistence specification provides the EntityManager interface that has the persist()
method. This method, when called and passed an instance of a Jakarta Persistence entity, per-
sists that entity instance as a database row to the underlying database. The “library” that does the
actual work of taking that instance and making sure it gets stored to the durable storage when the
EntityManager#persist() method is invoked, is called a compatible implementation of the
Jakarta Persistence specification.

Each specification that makes up the full Jakarta EE platform has an implementation. As a specifica-
tion itself, the Jakarta EE platform also has an implementation in the form of compatible products. As
the specifications are separated from their implementations, you as a developer will generally code
against the API constructs of the specification, and are free to pick any compatible implementation
of the platform. With this abstraction, Jakarta EE implementation vendors can collaborate on the
base, standard specifications and compete through innovations on top of the base platform.

An example of such invocation is the Payara Cloud offering from Payara. This innovation helps you
realise the dream of true separation of your business domain application and the runtime that pow-
ers it. With Payara Cloud, you simply upload your Jakarta EE application web archive (.war file) and
have it automatically deployed to the cloud, just as Jakarta EE was envisaged to have separation
of business domain from the runtime. Another example of custom features available on the Payara
Platform is remote CDI events. This feature, built on the Jakarta CDI specification, allows the firing
of CDI events that can be observed by any listener in a given Hazelcast cluster.

Options for Serverless in Java

https://jakarta.ee/specifications/cdi/
https://www.payara.fish/products/payara-cloud/
https://docs.payara.fish/community/docs/Technical%20Documentation/Public%20API/CDI%20Events.html

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

3

What Is Eclipse MicroProfile?
The Jakarta EE Platform is a general purpose platform for developing all kinds of applications. As
modern application development paradigms have changed a lot in the past years, there is a need to
evolve the platform to meet such changes. One such paradigm is cloud-native software application
development.

As the base Jakarta EE Platform has always been geared towards enterprises, it has historically
evolved at a much slower pace than changes in the software development space. It is for this reason
that the Eclipse MicroProfile project was created as an extension to the base platform to provide
cloud-native APIs for developing modern cloud-based applications.

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

4

Eclipse MicroProfile, built upon Jakarta CDI, Jakarta REST and Jakarta JSON Processing, comes
with the following APIs

• OpenTracing
• OpenAPI
• REST Client
• Config
• Fault Tolerance
• Metrics
• JWT Propagation
• Health

These APIs augment the much larger Jakarta EE Platform APIs to provide the developer with a cohe-
sive set of APIs for developing, testing and deploying cloud-native modern enterprise applications.

A Brief History Of NoSQL

Traditionally, enterprises stored their SQL data in relational database management systems (RDBMS).
This system served and still serves its purpose very well. However, with the rise of the popularity
of the aforementioned digital transformation in the early 2000s, coupled with the drop in storage
prices, enterprises began to collect huge amounts of data that needed to be processed, analysed
and stored, sometimes on the fly. Almost all of this massive amount of data was generated through
web applications usage by people. The rapid change in delivering superior digital experiences to
customers meant enterprises needed to change the way applications were developed.

One of the core changes had to do with how application data was structured. The much more strict
and rigid SQL data format meant developers needed to model complex data ahead of time. However,
the pace of change in delivering the new digital experiences meant that most of the time, application
data had to go through many iterations during development. Enterprises began to coll

It was around this same time that the Agile Manifesto was gaining popularity. Agile meant faster
application iteration, and this meant application data needed to be flexible to allow for much more
fluidity. The rise of the commoditization of compute resources also meant that developers could
spread their databases across multiple servers to scale out rather than scale up. Spreading appli-
cation data across servers also meant the ability to place the data close to end users.

https://agilemanifesto.org/

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

5

The Origin of The NoSQL Name
All these factors combined to popularise an already existing data storage paradigm name. In 1998,
Carlo Strozzi, an Italian software engineer released a DBMS that did not use the SQL language for
querying. He called his database NoSQL, to stand for a database that did not use SQL. His database
however, was more in line with the existing relational model than the latter schemaless ones. Even
though his database was relational, the name he had coined for it would come to be associated with
a very opposite database technology.

The Rise of Schemaless Databases
The term NoSQL was again used by Johan Oskarsson and Eric Evans in 2009 to describe schema-
less, non-relational databases. The distributed, non-relational model of NoSQL database technology
made it the almost perfect choice for companies like Twitter, Google and Facebook that had amassed
massive datasets from their web applications. These data sets needed to be analysed for insights
and the much more flexible nature of the NoSQL database technology was a fit for purpose.

Big Data And NoSQL
The term Big Data was coined in 2005 by Roger Mougalas to refer to data that was mind bogglingly
large such that it was impossible to process and manage using existing tools. This was the kind of
data that the aforementioned companies were collecting towards the end of the first decade of this
century. With the ability of NoSQL database systems to handle both structured and unstructured
data, and their support for both for flexible horizontal scaling and on the fly data analysis, these
companies started adopting the technology.

Naturally, NoSQL database technologies started gaining popularity. Different types we developed,
culminating in different NoSQL database types. Almost all the current NoSQL databases are open
source. The cloud vendors have developed their own NoSQL offerings as part of their cloud portfolio.
As the cost of storage keeps going down, and enterprises collect large data sets, NoSQL database
management systems play a pivotal role in storing and making sense of all this data.

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Home%20Page

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

6

Advantages of NoSQL Database Systems

NoSQL database systems, by their very nature, do have a number of advantages that can be appealing
to enterprises coming from the relational world. Among these advantages are.

Flexible Data Models
The flexibility of NoSQL database systems means that the data can change without having to update
the database. The data scheme can be considered “dynamic,” changing to suit the data being inserted.
This results in a lot of flexibility during development and bug fixing. It also means that development
teams can iterate much faster, pushing out new features far faster than is possible when using RDBMS.

Faster Queries
NoSQL database systems are designed and optimised for querying. Unlike RDBMS that use JOIN
for fetching data across multiple tables, NoSQL systems are optimised for queries through the way
the data is stored. Most data that will be read together are stored together, rather than separately.
This can result in much faster queries.

Scaling
NoSQL database systems allow for horizontal scaling-out, where you can add more commodity
hardware when the need arises. This can result in significant cost savings compared to the typical
vertical scale-up of RDBMS. With the rise in cloud vendors and massive commoditization of compute
power, horizontal scaling can be a significant cost saving consideration.

Easier Developer Experience
The very flexible, schemaless nature of NoSQL means developers can turn out faster features. NoSQL
data can also be mapped directly to the data models of the application programming language used
by the developers. This allows for less context switches and reduces impedance mismatch.

Faster Application Iteration
The flexible nature of NoSQL means application development teams can iterate application features
faster. The ability to have the database adjust to the application data model relieves development
teams of having to model and map application data to the database. This in turn frees them to
implement application features much faster.

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

7

Store Different Kinds Of Data
NoSQL systems allow the storage and retrieval of structured, semi-structured and unstructured
data, depending on the need of the application. A typical enterprise application can have different
types of data that need storing at different phases of application use. The flexible nature of NoSQL
systems allow for the storing of all these kinds of data.

Types Of NoSQL

There are different types of NoSQL database systems, each geared towards a different application
use case. Some databases might support multiple NoSQL types. One all the types have in common
is the flexibility of the data schema.

Graph Databases
Graph NoSQL databases are designed for data whose relations can be represented or viewed as
graphs. A typical example of graph data is social network relations. Each user has a graph relationship
with their circles. These kinds of data are suited for graph databases. Examples of graph databases
are Neo4J and JanusGraph.

Document Store
Document NoSQL databases store data as document objects, much like JSON objects. A typical doc-
ument is an object that has key-value pairs, with the values being any supported database type like
strings, numbers, and even other objects. A database in document NoSQL data parlance is called a
collection, and within collections, you have documents, analogous to tables in an RDBMS. However,
unlike RDBMS tables, the structure of documents in a collection can differ from each other thanks
to its flexible nature. Examples of document databases are Google Firestore and Mongodb.

Key-Value
Key-value databases store their data as dictionaries, with each entry having a key and associated
value. Within the dataset, each key can be used once, much similar to how a map works in Java.
Key-value databases are very popular as caches for storing intermediate application data in-mem-
ory. Given their very nature, key-value databases can be incredibly fast for data retrieval. Examples
include Redis and Couchbase.

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

8

Wide-Column
A wide-column database stores its data into flexible columns that can span multiple servers in a
cluster. The names and format of columns can be different across different rows. By their very nature,
queries in a column are very fast. Examples of wide-column databases are Apache Cassandra and
Google BigTable.

Jakarta EE And Google Firestore

Google Firestore is a fully hosted NoSQL database offering from
Google’s Firebase service. Firestore is schemaless and document ori-
ented. You store your data in documents that are collected into collec-
tions. A collection is a container for holding documents. A collection
in Firestore is just a bucket. It cannot have any attribute whatsoever.

Set Up
As a Java library, you can integrate the Firebase API into your Jakarta
EE application using some constructs like CDI producers. First, let us
pull in the dependency.

The Firebase Maven Dependency

Setting up Firestore in your Jakarta EE application entails adding the
firebase-admin dependency to your project as shown below.

 <dependency>

 <groupId>com.google.firebase</groupId>

 <artifactId>firebase-admin</artifactId>

 <version>9.1.1</version>

 </dependency>

This dependency pulls in the necessary APIs to be able to connect to Google Firebase to use the
Firestore database.

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

9

Producing The Firestore Object

The root entry to the Firestore database service is the com.google.cloud.firestore.Firestore interface.
This interface contains all the methods for interacting with the service. As Jakarta EE allows us to
organise an application with CDI, rather than litter the code instantiating this object everywhere, we
can have a central “factory” for producing it as shown below.

@ApplicationScoped

@Log

public class DocFactory {

 @Produces

 @ApplicationScoped

 public Firestore initFirestoreDb() {

 try {

 final InputStream resourceAsStream = this.getClass().

getResourceAsStream("/service-account-file.json");

 assert resourceAsStream != null;

 final FirebaseOptions firebaseOptions =

 FirebaseOptions.builder()

 .setCredentials(GoogleCredentials.

fromStream(resourceAsStream))

 .build();

 FirebaseApp.initializeApp(firebaseOptions);

 log.log(Level.INFO, () -> "Returning a FirestoreClient to

class --> " + injectionPoint.getBean().getName());

 return FirestoreClient.getFirestore();

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

 }

}

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

10

The DocFactory is a CDI ApplicationScoped singleton that has a producer method, initFirestoreDb that
“produces” an ApplicationScoped Firestore object. The method uses the file instantiation method for
authenticating to the Firebase service. There are a number of ways of authenticating to the service,
one of which is downloading a JSON file from the service and using it to authenticate by passing it
to the com.google.auth.oauth2.GoogleCredentials utility class. In a production app, the
JSON auth file should be loaded from somewhere on the host machine. It should not be bundled
with the application.

With the Firestore producer in place, using it is just a matter of doing @Inject into an injection
point in a bean. As the returned Firestore instance from the producer method in DocFactory is an
application scoped singleton, we benefit from not having to instantiate it over and over anytime an
instance is needed.

CRUD With Firestore
Almost every single application has, at its core, the creation, reading, updating and sometimes
destruction of data. We can equally do the same with Jakarta EE and Firestore. Let us start with
creating data.

Create

Creating or storing data in Firestore from your Jakarta EE application is a very straightforward process.
However, it is important to not get carried away by the schemaless, flexible nature of the datastore
and end up not structuring your data models well. The root cause of many application scaling prob-
lems can be traced to how the application data models are constructed. As such, it is important to
understand how the datastore sees and stores information and then structure your models within
that context, taking your business domain into account.

The sample data model for this guide is made up of two classes, a Department and Employee. A
department can have many employees, and an employee can have at most one department. This is
a quintessential paradigm in a typical Jakarta EE application. The Department.java class is shown
below.

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

11

public class Department {

 private String id;

 private String departmentName;

 private String description;

 private String businessKey;

 private List<String> employeeBusinessKeys = new ArrayList<>();

 private LocalDateTime createdOn;

 private LocalDateTime updatedOn;

 public void stamp() {

 if (createdOn == null) {

 setCreatedOn(LocalDateTime.now(ZoneOffset.UTC));

 }

 if (id != null && !id.isBlank()) {

 setUpdatedOn(LocalDateTime.now(ZoneOffset.UTC));

 }

 }

}

This is a simple Plain Old Java Object. The String list field contains the business key of all employees
in a given department. The stamp() method sets some basic lifecycle timestamps. The Employee.
java class is shown next.

public class Employee {

 private String id;

 private LocalDateTime createdOn;

 private LocalDateTime updatedOn;

 @NotBlank

 private String firstName;

 private String middleName;

 @NotBlank

 private String lastName;

 private String businessKey;

 @NotNull

 private LocalDate dateOfBirth;

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

12

 private String departmentBusinessKey;

 public void stamp() {

 if (createdOn == null) {

 setCreatedOn(LocalDateTime.now(ZoneOffset.UTC));

 }

 if (id != null && !id.isBlank()) {

 setUpdatedOn(LocalDateTime.now(ZoneOffset.UTC));

 }

 }

}

The Employee class is equally a simple POJO with a link back to the Department in which an employee
is. It also has the utility stamp() method. Both classes have business key fields. This concept war-
rants some explanation.

Business Vs Technical IDs

Every data stored in a datastore must have a unique identifier to identify it within the datastore.
In a RDBMS, this is the primary key. In a NoSQL datastore, this could be the document ID or some
other construct peculiar to the datastore. One thing that is common however, is that these IDs are
more technical than business. They are technical in the sense that they have a predefined purpose,
that is to identify each data entry in the datastore uniquely. The id fields in both the Department
and Employee classes refer to the document reference of each instance that will be inserted into
the collection.

Some applications use these technical IDs in the application for identifying data. This is not wrong.
However, from a business perspective, it is good practice to assign unique business context iden-
tifiers to data as well. So a given unit of data to be stored in a data store will have a technical ID,
almost always automatically set or generated by the datastore, and a business ID that should be
set by the application. This business ID should have some form of meaning within the context of the
application and business domain.

For instance the business ID of an insurance policy could be the policy number. The business ID of
a department could be a combination of the department name and some meaningful serial number.
The business ID of an employee could be a combination of the employee department and some
employee specific serial number. The concept of business ID is very business specific and as such
will need to be decided based on the context.

For the Department and Employee classes shown above, both are linked to each other through their
business IDs. For brevity and simplicity, this guide uses random UUID as the business ID for both.
However in your application, you should have a dedicated controller for generating such IDs.

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

13

Saving A Department

The most atomic unit of data in Firestore is the document. A document is much similar to JSON,
with specific supported types. A document can be roughly equated to a database row in a RDBMS.
Documents are collected together in a collection. The collection’s single role is to act as a receptacle
of documents and nothing else. A document can have its ID set by Firestore or you set it manually.
My recommendation is to let the database set it. A collection can have any name.

A document is schemaless, meaning one entry can have completely different fields from the next
one. This gives you a lot of flexibility in designing your data model. However, with such flexibility
comes the complexity of ensuring your data models are properly designed. You should also think
about how to validate your data to ensure data consistency and integrity in your application. The
code below shows how to add data to a collection. In this case, we add a Department instance to
a collection called jakarta-ee.

@ApplicationScoped

public class PersistenceService {

 public static final String BUSINESS_KEY_FIELD = "businessKey";

 public static final String JAKARTA_EE_COLLECTION = "jakarta-ee";

 @Inject

 Firestore db;

 Type type;

 DocumentReference documentReference;

 CollectionReference collectionReference;

 @PostConstruct

 void init() {

 collectionReference = db.collection(JAKARTA_EE_COLLECTION);

 type = new TypeLiteral<Map<String, Object>>() {

 }.getType();

 }

 public Department saveDepartment(final Department department) {

 documentReference = collectionReference.document();

 if (isEmptyString(department.getBusinessKey())) {

 department.setBusinessKey(UUID.randomUUID().toString());

 }

 department.stamp();

https://firebase.google.com/docs/firestore/data-model#documents
https://firebase.google.com/docs/firestore/data-model#collections

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

14

 department.setId(documentReference.getId());

 documentReference.set(toJsonMap(department));

 return findDepartment(department.getBusinessKey());

 }}

The PersistenceService is an ApplicationScoped singleton bean that manages interactions with the
database. We instantiate a com.google.cloud.firestore.CollectionReference object in
the @PostConstruct method of the bean by calling collection method on the injected Firestore
database instance, passing in the name of the collection, in our example, jakarta-ee. If the collection
does not exist, it will be created automatically.

The saveDepartment method first calls the document method on the CollectionReference
instance, without passing in any argument. This returns a com.google.cloud.firestore.
DocumentReference instance with an auto generated document reference ID. The method sets
a business ID if there is none set. The returned DocumentReference ID is set on the department
instance in the id field. This way, each instance has a technical ID of the document into which it is
stored.

The set method on the DocumentReference is what actually passes the data to the database. This
method has overridden versions that take either a POJO or a java.util.Map<String, Object>.
The Firestore database instance will automatically convert passed Java objects to the underlying
database JSON document representation. However, directly passing in Java objects to the set method
on the DocumentReference could limit your models to only types that the underlying marshaller
supports. For example you cannot freely marshal or unmarshal a number of the java.time types using
the POJO feature of the Firestore database.

To workaround that, we convert the Department instance to a JSON representation of Map<String,
Object> and pass this converted String to the set method. This way, we can use the gamut of Java
types (including java.time types) and still be able to persist data to the Firestore database. The
toJsonMap method is shown below.

private Map<String, Object> toJsonMap(final Object object) {

 return json.fromJson(json.toJson(object), new

TypeLiteral<Map<String, Object>>() {

 }.getType()

);

 }

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

15

This utility method uses the jakarta.json.bind.Jsonb instance to convert an object to a
Map<String, Object> representation. Such a map will have each field as a key and the field value
as the value of the key. Calling the set method on the DocumentReference instance will persist the
passed instance to a document in the collection from which the DocumentReference was obtained.
An example of such a call will result in data in the jakarta-ee collection as shown below:

Saving An Employee

The process of saving an Employee instance into the Firestore database is not much different from
how the Department was saved above, as shown in the following code snippet.

public Employee saveEmployee(final String department, final Employee employee)

{

 documentReference = collectionReference.document();

 Department dept = findDepartment(department);

 if (dept != null) {

 documentReference = collectionReference.document();

 if (isEmptyString(employee.getBusinessKey())) {

 employee.setBusinessKey(UUID.randomUUID().toString());

 }

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

16

 employee.stamp();

 employee.setId(documentReference.getId());

 employee.setDepartmentBusinessKey(dept.getBusinessKey());

 if (dept.getEmployeeBusinessKeys() == null) {

 dept.setEmployeeBusinessKeys(new HashSet<>());

 }

 dept.getEmployeeBusinessKeys().add(employee.getBusinessKey());

 documentReference.set(toJsonMap(employee));

 updateDepartment(dept);

 return findEmployee(employee.getBusinessKey());

 }

 throw new RuntimeException("No department found for dept business

key " + department);

 }

The saveEmployee method takes the business key of a department to which the new employee
should be assigned. The Department is loaded from the database, the employee business ID is set
and then the employee gets added to the loaded department, and has its department linkback also
set. The employee instance is then persisted, and the loaded department is also then updated. A
sample call to this method results in an employee instance in the database as shown below.

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

17

The employee instance has a linkback to its department through the departmentBusinessKey
field. The updated department in the database is also shown below.

Creating documents in Firestore entails calling the set method on a DocumentReference. As we have
seen, a neat workaround to avoiding pitfalls is converting a POJO to a JSON map, passing such a
map to the set method. This I have found to be the most flexible way to maintain the gamut of Java
features and still be able to take full advantage of Firestore.

Reading Data

Reading data from the Firestore database is not much different from how it is done in a RDBMS. You
can either directly load a document by its document ID or reference, or query.

Fetching By Document Reference

Fetching a document by its reference entails passing the document reference or technical ID to the
document method on a com.google.cloud.firestore.CollectionReference instance. For
instance, to fetch a Department by its reference, or primary key if you will, we make the following call.

Map<String, Object> dept =

collectionReference.document("mJpN1bN97D6LTFkLWdRR").get().get().getData();

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

18

The returned Map<String, Object> can then be transformed into the concrete Java type with the
following code snippet.

Department department = json.fromJson(json.toJson(d.getData(), Department.class);

This mode of fetching data works fine as long as you don’t mind the mix of technical and business
ID in your code base.

Fetching Data By Querying

The Firestore database has rich query capabilities. The CollectionReference class extends com.
google.cloud.firestore.Query class to give it powerful methods for querying your data. The following
code snippet shows querying for a Department by its business key.

public Department findDepartment(final String businessKey) {

 ApiFuture<QuerySnapshot> query =

 collectionReference.whereEqualTo(BUSINESS_KEY_FIELD,

businessKey).get();

 try {

 List<QueryDocumentSnapshot> documents = query.get().

getDocuments();

 Department department = documents.stream().map(d -> json.

fromJson(json.toJson(d.getData()), clazz)).findFirst().orElse(null);

 log.log(Level.INFO,

 () -> String.format("Returning department %s with

business key %s", json.toJson(department),

 businessKey));

 return department;

 } catch (final Exception e) {

 throw new RuntimeException(e);

 }

 }

The CollectionReference#whereEqualTo method takes a field in the document and a value
to compare to. It returns a com.google.cloud.firestore.QuerySnapshot wrapped in a com.
google.api.core.ApiFuture. The getDocuments call on the returned QuerySnapshot returns
a list of com.google.cloud.firestore.QueryDocumentSnapshot. This is then streamed and
mapped to a Department Java type.

Firebase querying is very expressive and has a lot of options that give you the flexibility to query
your data in from different angles. You can do all the traditional paging, sorting, filtering that you

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

19

may have been used to doing with RDBMS. Do check out the docs for the various querying options
and features.

Updating Data

Updating a given document in Firestore is done by passing a com.google.cloud.firestore.SetOptions
to the set method of DocumentReference. The updateDepartment method below shows how to
update a Department, much similar to how it is done in a RDBMS.

public Department updateDepartment(final Department department) {

 DocumentReference document = collectionReference.

document(department.getId());

 department.stamp();

 document.set(toJsonMap(department), SetOptions.merge());

 return findDepartment(department.getBusinessKey());

 }

Much like persisting data, updating a given document requires getting a reference to the document,
in the above case, using the id field in a passed instance. Since we set the id field to the technical
id of the document, we can use that to get a reference to the document from Firestore. With the
reference in hand, we pass in the updated department as a JSON map, passing in a second option
of SetOptions.merge() to the set method on the document reference.

This call will cause Firestore to update the document in the database with the newly passed instance.
Only fields with values in the newly passed instance will be updated in the database. The setOp-
tions has other methods to control the update process. If you are coming from a RDBMS, then the
SetOptions.merge() method as used above will be familiar.

Deleting Data

To delete a document in Firestore, call the delete() method on a given DocumentReference. This
will remove the Document from the collection. As a precaution, I don’t encourage the act of deleting
data except for legal purposes. I recommend you archive or anonymise data rather than an outright
deletion, again except for legal reasons.

Caveats
As a Jakarta EE developer, you most likely are familiar with the Jakarta Persistence API that allows
you to harness the full power of RDBMS in your Jakarta EE applications. Firestore is a completely
different data paradigm as showcased so far in this guide. There are some caveats you should be
aware of as you take this NoSQL database for a ride.

https://firebase.google.com/docs/firestore/query-data/get-data

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

20

No Cascade Operation

Unlike in Jakarta Persistence where you can model entities with relationships that cascade oper-
ations, Firestore has no such feature. If you need it, you might have to roll it out by hand as we did
with persisting an Employee and then having to manually update the corresponding Department.

Database Referential Integrity

The referential integrity feature of a typical RDBMS is not available in the Firestore database. If you
heavily rely on that feature, you might want to keep this in mind and find a workaround.

Different Query Paradigm

NoSQL queries are different from traditional SQL queries. Most notable is the absence of table JOINs.
This is made up for in most NoSQL data modelling by data duplication to allow for “single shot”
queries. NoSQL queries in general are fundamentally different from SQL counterparts because the
underlying data is different. Keep this in mind when giving NoSQL a trial.

Different Data Model

NoSQL databases have a different data modelling paradigm. This is important to keep in mind so
that you can design your data models in a way that allows you to take maximum advantage of NoSQL
features. Ideally you should not approach NoSQL data modelling with the RDBMS mindset. NoSQL
databases like Firestore offer much flexibility at the cost of some data duplication. This is something
to keep in mind when designing your models. You might have to duplicate some data to optimise
your queries.

A Developer Guide to NoSQL Persistence on The Jakarta EE
Platform With Google Firestore

21

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

Payara Services Ltd 2023 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Summary

This guide has introduced you to incorporating Firestore NoSQL database into your Jakarta EE appli-
cation. In the process, you learned the theory of Jakarta EE, a brief history of NoSQL, types of NoSQL
databases and finally incorporated Firestore database into your application and saw how to make
basic CRUD operations using the Firestore database. You should now have a firm foundation on
which you can explore the use of NoSQL in your own projects.

You may find these guides useful:

• A Business Guide to NoSQL on the Jakarta EE Platform
• The Complete Guide to Testing on the Jakarta EE Platform
• The Complete Guide To JSON Processing On the Jakarta EE Platform

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/resource/a-business-guide-to-nosql-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/the-complete-guide-to-testing-on-the-jakarta-ee-platform/
https://www.payara.fish/resource/the-complete-guide-to-json-processing-on-the-jakarta-ee-platform/
https://www.payara.fish/products/payara-cloud/

	The Theory Of Jakarta EE
	What Is Jakarta EE?
	What Is A Specification?
	What Is A Compatible Implementation?

	What Is Eclipse MicroProfile?

	A Brief History Of NoSQL
	The Origin of The NoSQL Name
	The Rise of Schemaless Databases
	Big Data And NoSQL

	Advantages of NoSQL Database Systems
	Flexible Data Models
	Faster Queries
	Scaling
	Easier Developer Experience
	Faster Application Iteration
	Store Different Kinds Of Data

	Types Of NoSQL
	Graph Databases
	Document Store
	Key-Value
	Wide-Column

	Jakarta EE And Google Firestore
	Set Up
	The Firebase Maven Dependency
	Producing The Firestore Object

	CRUD With Firestore
	Create
	Reading Data
	Updating Data
	Deleting Data

	Caveats
	No Cascade Operation
	Database Referential Integrity
	Different Query Paradigm
	Different Data Model

	Summary

