£ poyora’

GlassFish to Payara Server 5
Migration Guide

The Payara’® Platform - Production-Ready,
Cloud Native and Aggressively Compatible.

®
rpavgra GlassFish to Payara Server 5 Migration Guide

Contents

Introduction
Why Choose Payara Server Enterprise?
Migration Options from GlassFish 3 to Payara Server 5
Migrating from GlassFish 3.x to Payara Server 5.x
Migrating from GlassFish 4.x to Payara Server 5.x
Migrating from GlassFish 3.x to Payara Server 5.x in 2 Steps
Migrating from GlassFish Server Control
Main Advantages of Payara Server 5
Migration Process to Payara Server 5
Preparation
Migrating a Domain from GlassFish using Backup and Restore
Additional Considerations for Nodes and Instances
Special Considerations for Payara Server 5.201
Clustering and High-Availability
Summary of Clustering in GlassFish
Clustering and High Availability Improvements in Payara Server 5
Domain Data Grid in Payara Server 5
Deployment Groups in Payara Server 5
Standalone Instances
Summary of Clustering Options in Payara Server 5
Keeping a Standard GlassFish Cluster
Migrating from a Standard GlassFish Cluster to a Deployment Group
Mapping Between JSON and Java Objects
Description of the Changes in JSON Mapping
Keep Using JAX-B Mapping for JSON in Payara Server 5
Keep Using Jackson 2 Library for JSON Mappings in Payara Server 5
Migrating from JAX-B Mappings to JSON-B Mappings
Built-in Databases

Description of the Changes in Built-in Databases

O 00 0 00 N 9 o0 o0 M WN R

NN NN NN R R R R BR R R
N W NP P OO OOWMSNOOOG-MA®WDNDNN PR

g : ®
pOllerO GlassFish to Payara Server 5 Migration Guide

H2 Database
Derby Database
Keeping the Data Source Configuration from GlassFish
Migrating to the New Data Source Configuration in Payara Server 5
HTTP/2 Protocol Support
Changes Related to HTTP/2 Protocol
Keeping HTTP 1.1 Protocol for All Listeners
How to Replace Features of GlassFish Server Control
Coherence Active Cache
Monitoring Scripting Client
Oracle Access Management Integration
Performance Tuner
Load Balancer Configurator Plugin
Domain Administration Server Backup and Recovery
Features to Consider During or After Migration
Slow SQL Logging
Payara Health Check Service
Request Tracing Service
Working with Third-Party Libraries
Payara Micro
Cloud Deployment Improvements
Default Role/Group Mapping
Other Production Features
Known Issues After Migrating
How is Payara Server Better than GlassFish?
Migrating from GlassFish to Payara Server Should Be Relatively Painless!
Where to Get More Migration Help
Hands-On Assistance for Payara Enterprise Customers

Run the Payara Platform in Production

25
25
25
25
27
28
28
29
30
30
31
31
31
32
32
32
32
33
33
33
34
35
35
35
36
38
39
39
39

®
rpavgra GlassFish to Payara Server 5 Migration Guide

Introduction

Since Sun Microsystems first developed GlassFish as the reference implementation (RI) of Java EE,
it has been used by both developers in its open source form, and by Sun - then, later, by Oracle - in
production, fully supported. In a competitive market, GlassFish has fared well and become a popular
choice, with the vast majority using the GlassFish Server Open Source Edition. In late 2013, Oracle
announced the end of commercial support for GlassFish. By the time of publication of this guide,
both Premier and Extended support options for Oracle GlassFish have expired and as such, unless
the user has a sustaining support contract; no official support for the product is available.

Obviously, Oracle's decision has presented a problem: both for users of the open source edition, and
licensees of Eclipse GlassFish. There have only been three Java EE 7 certified releases of GlassFish
Open Source Edition since 2013, and concerns are arising for the future quality of GlassFish, due to
the lack of commercial support users raising bugs and funding the fixes for the community, as well
as other paying users.

One year after the original announcement of the end of support from Oracle, Steve Millidge - a Java EE
expert and the founder of Payara Services Ltd - announced the arrival of Payara Server and, with it, a
reintroduction of a 24/7 vendor support option for businesses who had previously chosen GlassFish
as a platform. Payara Server proved to be the logical 'drop-in replacement' for GlassFish Server Open
Source Edition, helping companies migrate quickly and easily onto a very similar platform with added
reassurance of regular releases, bug fixes, patches and enhancements.

As Payara Server has developed, its popularity has grown very quickly among the community due
to an open and responsive development team, a regular quarterly release cycle and introduction of
some crucial production enhancements which were never available in GlassFish.

Migrating from GlassFish to Payara Server can be a simple and straightforward process, made even
simpler with the help of this Guide. With no need for code rewrites or application re-architecting,
Payara Server is a credible solution on which to build your Java middleware platform. On the next
pages, you will find an overview of the things you will need to consider in your GlassFish to Payara
Server migration project; as well as details of Payara Server's tools and features which will make
your life (and your application server management) much easier!

https://blogs.oracle.com/theaquarium/java-ee-and-glassfish-server-roadmap-update
https://blogs.oracle.com/theaquarium/java-ee-and-glassfish-server-roadmap-update
https://blog.payara.fish/the-new-fish-on-the-block

®
rpalljgra GlassFish to Payara Server 5 Migration Guide

Why Choose Payara Server Enterprise?

The first decision to make when facing a migration is to consider what platform to migrate to. Staying
with a newer version of the same server is the most pain-free path to take. In the case of GlassFish
migration, Payara Server is the natural successor, since the source code was originally derived
from GlassFish and adapted for modern software architectures - it is a technology that you and
your developers are already familiar with.

Enterprise quality production and development enhancements (detailed further in this
guide), easy installation, powerful administration interface, simple to use tools and fea-
tures, monthly release cycle, backed by emergency hot fixes to continually improve application
security - these are just a few examples of the many great features of Payara Server that make it an
ideal solution for current GlassFish users.

Ontop of that, Payara Server is entirely open source and - unlike the commercial edition of GlassFish
- there are no components withheld from the community. From the beginning, Payara strives to be
open and transparent. All the source code and commits are publicly available, and community users
are welcome to raise issues against the server (see GitHub) to help increase quality. Since the source
code is evolutionary over what is available in GlassFish 4.x, the resulting container is a more natural
choice for an upgrade than GlassFish 4.x or 5.x itself. Payara Server fixes a lot of defects present in
GlassFish and offers performance improvements along with many new features that offer a smooth
migration experience. Payara Server 4.x is a drop-in replacement of GlassFish 4.x and migrating
to it is very similar to migrating to GlassFish 4. Payara Server 5 introduces changes in some areas,
most notably to improve clustering features, so migrating to it might require a bit more effort than
migrating to GlassFish 5.x. But, again, the migration to Payara Server 5 is often with much better
results because of many improvements, bug fixes and new features that add better support for
modern technologies like Docker, cloud deployments and microservices.

Application servers are complex pieces of software and have many areas where edge-case bugs can
hide. Payara Server Community offers innovative, monthly releases with new features and enhance-
ments to try out, while Payara Server Enterprise offers monthly builds to maintain the security and
stability of our customers’ environments. The frequency of updates provides strong reassurance
that any immediate issues are much more likely to be fixed rapidly. So, unlike the users of GlassFish,
Payara Server users do not have to wait 12 (or more!) months for a new release with no guarantee
that a fix will be included.

Providing a logical migration path from GlassFish Server Open Source Edition, Payara Server is the
platform of choice for your Jakarta EE (Java EE) applications. Our vision is to optimise Payara Server
to make it the best application server for production Jakarta EE applications.

https://github.com/payara/Payara/issues
https://www.payara.fish/solutions/guides-and-how-tos/

®
%vgra GlassFish to Payara Server 5 Migration Guide

Migration Options from GlassFish 3 to
Payara Server 5

When migrating from the commercial edition of GlassFish 3 to Payara Server 5, there are these areas
to consider:

« How to deal with Oracle commercial features, which aren't available in Payara Server
- How your application might be affected by API changes in Payara Server

- How to migrate your GlassFish configuration to Payara Server

- How to get the most out of the new features and improvements in Payara Serve

In some cases, the migration might be simpler to do in 2 steps:

» Migrate from GlassFish 3 to Payara Server 4
« Migrate from Payara Server 4 to Payara Server 5

When migrating from the open source GlassFish edition, you don't need to consider migrating from
Oracle's commercial features, but all other areas are still valid.

https://info.payara.fish/migrate-from-glassfish-to-payara-server
https://info.payara.fish/payara-server-4-to-payara-server-5-migration

®
%vgra GlassFish to Payara Server 5 Migration Guide

Migrating from GlassFish 3.x to Payara Server 5.x

START HERE | S

I’m Currently Running

@) Migrate from Java EE 6 to Java EE 8 @) Migrate from Java EE 7 to Java EE 8

@ Update APIs @ Update APIs
JAX-RS1.1t02.1 JPA2.0t02.2 JAX-RS 2.0t0 2.1
JSF2.0t02.3 JASPIC 1.0 to JSF2.0t02.3
CDI1.0t0 2.0 1.1 JPA2.1t02.2

JMS 1.1t0 2.0 JACC1.3t0o1.5

&) Compare 3rd Party Libraries

Third party libraries may conflict with Payara Server’s included libraries. Use
Payara Server’s isolated classloader for EAR and WAR deployments for 3rd party
libraries.

Do You Run Commercial Editions of GlassFish with Oracle GlassFish Server Control?

o

@ Use Payara Server’s version of Oracle’s features:

Oracle GlassFish Performance Tuner = payaradomain
Coherence Active Cache = Payara Server Data Grid
Monitoring Scripting Client = IMX, MBeans, + Health Check
Oracle Access Management Integration = Single Sign — on

) Update JDK Installation to JDK 8 or Newer

Get More Out of Your Payara Server 5 Deployment

(© Migrate Shoal Clusters to Deployment Groups
@) Upgrade to Domain Data Grid
) Refactor JAX-B Mappings to Json Mappings

) Migrate from Derby Database to H2 Database

AY
|
|
|
|
|
|
|
|
|
|
|
|
|

P

Welcome to Payara Server 5!

®
rpavgra GlassFish to Payara Server 5 Migration Guide

As far as the application server itself is concerned, there were very few major changes between
GlassFish 3 (Java EE 6) and 4 (Java EE 7). This also means there are very few major changes between
GlassFish 3 and Payara Server 4. There were a lot more changes in Payara Server 5, mainly in the
following areas:

- JDK 8is required

« Updates between Java EE 6 and Java/Jakarta EE 8
» Supports MicroProfile and JCache APIs

« Clustering and High Availability changes

« A new default embedded database

« HTTP/2 protocol by default on secure listener

Payara Server 5 includes several updated APIs and regularly incorporates updated minor versions
of any external projects like, for example, Weld for CDI or Mojarra for JSF. There have been a couple
of updated APIs in Java EE 8, which were released through GlassFish, however not all of these are
significant changes.

APIs with significant updates between Java/Jakarta EE 6 and Java EE 8 include:

» Servlet, from 3.0 to 4.0, with HTTP/2 and Server Push support
« JAX-RS, from1.1t0 2.1

e JSF, from 2.0to 2.3

« CDI, from 1.0 to 2.0, with asynchronous events

« EL (Expression Language), from 2.2 to 3.0

« Bean Validation, from 1.0 to 2.0

« IJMS, from1.1t02.0

« JPA, from2.0t0 2.2

« JASPIC, from1.0t0o 1.1

« JACC, from 1.3 to 1.

As always, backwards compatibility is of high importance to Java EE so, for example, a JMS 1.1 MDB
should still be able to interact with a modern, JMS 2.0 enabled broker. Any code still using older APIs
would be supported fully by the Payara support team in the case of any bugs found in Payara Server.

There are some brand-new APIs, as well as updated existing APIs, released in Java EE 7 in GlassFish
which Payara Server 4 has inherited. These include:

e Concurrency

- JBatch

« Websocket

- JSON-P

- JSON-B

- Java/Jakarta EE Security

In addition to APIs which are part of the Java EE 8 specification, Payara Server 5 also implements
the following APIs:

®
%vgra GlassFish to Payara Server 5 Migration Guide

JCache which, though the specification has yet to be incorporated into Java EE, is a standard imple-
mented by many vendors already. Payara Server provides JCache support by embedding Hazelcast
and can therefore make use of dynamic clustering to store session data.

MicroProfile is a set of APIs that integrates well with Java EE APIs. It specifies how monitoring and
otherinformation about applications is exposed by Payara Server and provides APIs forimplementing
microservices, reactive, and other patterns not yet covered by Java EE. Payara Server 5 implements
MicroProfile 3.x APIs.

The new APIs will be useful to developers but are of no immediate concern for any migration plan.
You may want to keep them in mind for future application development planning.

Migrating from GlassFish 4.x to Payara Server 5.x

In most cases, any application which runs on GlassFish 4 will run on Payara Server 4. Therefore, you
can follow a dedicated guide about upgrading from Payara Server 4 to Payara Server 5. Or you may
go back to the instructions for upgrading from GlassFish 3.x, continue following this guide and skip
parts which are not relevant for you. Because GlassFish 4 doesn't bring any new significant features
on top of GlassFish 3, steps for migrating of all APIs and features of GlassFish 4 to Payara Server 5
would be the same as for migrating them from GlassFish 3. The only potential additional hiccup may
be where the application to be migrated happened to exploit some incorrect or invalid behaviour in
GlassFish 4, which has subsequently been corrected or fixed in Payara Server 5.

Payara Enterprise customers can request support to either assist in changing the application con-
cerned or providing some other workaround. The main things to consider when migrating from
GlassFish 4.x to Payara Server 4 is not what changes might be mandated - since the number is
likely to be zero - the key consideration would rather be what changes are possible, due to the extra
features added, such as JCache.

Migrating from GlassFish 3.x to Payara Server 5.x in 2 Steps

Because, compared to any version of GlassFish, Payara Server 5 introduces a lot more changes
than Payara Server 4, in some cases it might be easier to migrate first to Payara Server 4 and then
to Payara Server 5. This guide focuses on migrating directly from GlassFish 3 to Payara Server 5. If
you want to migrate in 2 steps, we recommend you to follow the separate guides about migrating
from GlassFish to Payara Server 4 and then from Payara Server 4 to Payara Server 5.

Note that Payara Server 4 is not maintained for the community anymore, and the last community
version 4.1.2.181 was released in February 2018. Payara Enterprise customers have access to
the latest features and fixes in Payara Server 4 until the year 2025, along with assistance from the
support team during your migration, so keep this in mind when choosing which version you will use
for the long term.

®
%vgra GlassFish to Payara Server 5 Migration Guide

Migrating from GlassFish Server Control

Oracle GlassFish Server Control is a suite of proprietary features available with the commercial
edition of GlassFish 3 that improves performance of the server, enables fine-grained monitoring
and enables more secure and highly available production deployments. GlassFish Server Control is
composed of the following six features:

« Load Balancer Configurator Plugin

« Domain Administration Server Backup and Recovery
« Coherence Active Cache

« Monitoring Scripting Client

Oracle Access Management Integration

« Performance Tuner

These features are not available for Payara Server. If you use them intensively with GlassFish 3,
there are tools and techniques available that can reproduce the functionality of these features within
Payara Server and achieve similar results. They will be described in detail further in this guide.

Main Advantages of Payara Server 5

Payara Server 5 was introduced at the beginning of 2018 as the next major version of Payara Server.
Payara Server 4 was derived from GlassFish Open Source Edition 4.1, and was the recommended
option for many users looking for a drop-in replacement for their GlassFish server installations.
Constant feedback from our customers and the community about the user experience of our product
has led our evolution of Payara Server to meet user expectations. We have concluded that, although
Payara Server 4 is a reliable option in the market for both developers and operation staff, there is
room to implement improvements and changes to leverage the productivity levels required by the
current environment. Thus Payara Server 5, which is derived from GlassFish Server Open Source
Edition 5, deviates some of its features and internal mechanisms from the ones implemented on
GlassFish to offer the productivity and functionality that our user base really needs. As such, Payara
Server 5 targets the following goals:

« Cloud and container friendly deployments

« Compatible with modern Java APIs

« Reduce the dependency on legacy components and/or third-party libraries
- Improve the general performance and quality of deployed applications

« Provide top-level security and monitoring feature

The purpose of this guide is to help you prepare and understand the main challenges you may face
when migrating from GlassFish to Payara Server 5. Be sure to understand this entire document
before planning the migration in your projects to have a better understanding of which steps to take
in your case. Payara Enterprise customers can submit support tickets with migration questions for

®
%vara GlassFish to Payara Server 5 Migration Guide

assistance, or should you want more hands-on guidance through the migration process, take a look
at our upgrade service as part of our Payara Accelerator consultancy. If you don't yet have a Payara
Enterprise subscription, we invite you to take a look at becoming a customer and choosing from our
included Migration & Project Support option, 24x7 support, or 10x5 support option.

Migration Process to Payara Server 5

Preparation

Payara Server 5 is compatible with both IDK 8 and JDK 11. If your GlassFish domains are currently
running on JDK 7 or a lower version, you will have to update your JDK installation to JDK 8 before
starting the migration. We encourage you to use Zulu JDK, since Payara Enterprise customers have
commercial support for its Enterprise solution as well.

You also must keep in mind that Payara Server 5 supports Java/Jakarta EE 8 applications. When
migrating your GlassFish 4 installation, you must be careful if your application uses JSON serializa-
tion of Java objects, since Java EE 8 includes the new JSON-B API which might break your existing
applications. Additionally, there is a new iteration of the Servlet API (4.0) that introduces HTTP/2
support. More information about these two topics are explained in the following sections.

Migrating a Domain from GlassFish using Backup and Restore

One of the recommended strategies that you can use to migrate your working GlassFish domain to
Payara Server 5 is to execute a backup of this domain and then restore it under Payara Server 5.
Keep in mind that this strategy will import your current configuration as it is into Payara Server 5, so
in order to use the new features included (like the Domain Data Grid, H2 database, HTTP/2 protocol,
etc.) you will have to implement specific configuration changes mentioned in the following sections.

Follow these steps to implement this strategy on your environment:

1. First, you need to suspend or stop the GlassFish domain if it's running. Open source
GlassFish versions do not support suspending the domain. For them, the domain backup
process will only work when the domain in question is not running, so you will have to
schedule a period of downtime for your current GlassFish production domain.

2. Run the backup-domain asadmin command and specify the path to a directory where a
compressed file holding the domain backup will be stored:

asadmin> backup-domain --backupDir <path-to-backup-directory> <domain-name>

https://info.payara.fish/upgrade-data-sheet?hsCtaTracking=eebaa3c5-29fb-4fcd-9af1-a16935252492%7Ce93574ed-cd35-4b2e-bf7c-e86a5bafa9c2

payara’

The resulting compressed file will then be stored in this location:

<path-to-backup-directory>/<domain-name>/<domain-name> <yyyy mm dd> v<backup

number>.zip

Where the backup_number placeholder represents a consecutive integer that counts the current
number of backup operations executed on the domain.

3. With the domain fully backed-up, you can now proceed to restore it under your new Payara
Server 5 installation. Run the following command:

asadmin> restore-domain --filename <path-to-backup-directory>/<domain-

name>/<domain-name> <yyyy mm dd> v<backup number>.zip --long <domain-name>
The command should print out a detailed report of the restoration outcome:

Restored the domain (<domain-name>) to /opt/payara5/201/glassfish/
domains/<domain-name>
Description : <domain-name> backup created on <yyyy mm dd> by

user <username>

GlassFish Version : Payara Server 5.201 #badassfish (build 512)
Backup User : <username>

Backup Date : <backup-timestamp>

Domain Name : <domain-name>

Backup Type : full

Backup Config Name
Backup Filename (origin) : <path-to-backup-directory>/<domain-name>/<domain-
name> <yyyy mm_dd> v<backup number>.zip

Domain Directory : /opt/payara5/201/glassfish/domains/<domain-name>

Command restore-domain executed successfully.

4. And finally, proceed to start the restored domain!

payara’

If your domain configuration includes the definitions of instances that live in separate nodes, you must
consider the following set of recommendations for the domain to be fully workable when restored:

1. You will have to do a manual installation of the Payara Server 5 binary files in the same
locations as they are defined in the domain configuration. Keep in mind that you will have to
replace the GlassFish binaries in that case, which means that you must forego your working
GlassFish domain. This could be a problem if you want to revert your Payara Server 5 instal-
lation and go back to GlassFish, so in order to prevent that it is best that you change the
installation directory in the remote hosts. Change this configuration on the admin console
before starting the remote instances:

B common Tasks
@ Domain Edit Node

2 DataGrid Edit properties for the selected node.

B server (Admin Server)

¢u Deployment Groups

B Instances localhost-domain1
[Nodes

_ SSH v
local-node-1

W cahostalustar-domain If the type is CONFIG, the node is not enabled for remote communication and the DCOM or SSH information is removed from the page. To create instances on a remote
node of type CONFIG, you must use the create-local-instance subcommand. You cannot use the Administration Console for this purpose.
" remote-node-1
&4 Clusters (Deprecated) Node Host: localhost g]

B Applications Name of the host that the node represents. If the type is DCOM or SSH, the node host is required.

&9 Lifecycle Modules

B Resources Path to the directory that will contain files for instances created on this node. The default is "${com.sun.aas.productRoot)/glassfish/nodes"

@ Concurrent Resources)

® JDBC The full path to the parent of the base installation directory of the Payara Server software on the host, for example, /export/payara41
+ JMS Resources

Y UNDI

B JavaMail Sessions

ﬁ- Resource Adapter Configs
Enabled
Configurations |

sEEER Specifies whether the node is created even if validation of the node's parameters fails.

s sSHport:
o

Support
=
The port to use for SSH connections to this node's host. The default is 22.

2. You will have to re-synchronize the creation and association of these instances to the DAS.
In order to do this, you will have to manually start the instances in each of the nodes (be

®
vaQrO GlassFish to Payara Server 5 Migration Guide

them local or remote nodes) configured within the domain. When starting these instances,
set the --sync argument to full so that each instance is re-created successfully:

asadmin> start-local-instance --sync=full <instance-name>

Special Considerations for Payara Server 5.201

Payara Server 5.x, in its release 5.184 introduced a set of specific requirements on the JDK 8 update
needed to run the server were included out of necessity in order to circumvent changes needed by
several SSL related classes that are included with the Grizzly NPN framework. This framework pro-
visions the HTTP/2 protocol for the Web Container, and depending on the version of the framework,
there are exact requirements for the version of JDK being used as well. If an incompatible JDK 8
update is being used with Payara Server 5, the server's startup will be affected. The best way to solve
this (and future compatibility issues) is to manually update the domain configuration of the server:

1. Open your domain configuration file (domain.xml) and locate the following JVM argument
setting in the server-config configuration tree:

<java-config classpath-suffix="" debug-options="-agentlib:jdwp=transport=dt
socket, server=y, suspend=n, address=9009" system-classpath="">

o= 50 ==

<jvm-options>-Xbootclasspath/p:${com.sun.aas.installRoot}/lib/grizzly-npn-
bootstrap.jar</jvm-options>

Ll=e= 000 =2

</java-config>
2. Replace the JVM setting with the following new set of elements:

<java-config classpath-suffix="" debug-options="-agentlib:jdwp=transport=dt
socket, server=y, suspend=n, address=9009" system-classpath="">
Ll== 00 =>
<jvm-options>[1.8.0|1.8.0ul20]-Xbootclasspath/p:${com.sun.aas.installRoot}/
lib/grizzly-npn-bootstrap-1.6.jar</jvm-options>
<jvm-options>[1.8.0ul21]1.8.0ul60]-Xbootclasspath/p:${com.sun.aas.
installRoot}/lib/grizzly-npn-bootstrap-1.7.jar</jvm-options>
<jvm-options>[1.8.0ul61]1.8.0ul90]-Xbootclasspath/p:${com.sun.aas.
installRoot}/lib/grizzly-npn-bootstrap-1.8.jar</jvm-options>
<jvm-options>[1.8.0ul91]1.8.0u500]-Xbootclasspath/p:${com.sun.aas.
installRoot}/lib/grizzly-npn-bootstrap-1.8.1.jar</jvm-options>
<jvm-options>[9|]-Xbootclasspath/a:${com.sun.aas.installRoot}/lib/grizzly-
npn-api.jar</jvm-options>
== ;00 ==>

</java-config>

11

®
%vara GlassFish to Payara Server 5 Migration Guide

With that, your migrated domain should be compatible with the corresponding JDK 8 update, and the
domain will be ready for future migrations as well. Additionally, when considering upgrading to JDK
11, the domain will be prepared as well to run with the correct Grizzly Bootstrap NPN API version.

If your domain has multiple configurations that are used for running additional instances, you must
apply the same changes in their configuration trees as well.

Clustering and High-Availability

Summary of Clustering in GlassFish

The clustering mechanism supported by GlassFish is based on the (already deprecated) Shoal project.
A Shoal cluster needs to be prepared in a systematic manner and new instances can be manually
added or removed as well. Although this mechanism is reliable, there are is set of multiple limitations
that have piled up over the years:

« Preparing a cluster requires many things: setting up the cluster in the DAS, setting up each
of the nodes either local or remote, setting up SSH access across all cluster hosts (in the
case of remote nodes)

= Since instances must be added or removed manually to the cluster, in a cloud environment,
scaling up or down is usually a cumbersome and extremely tedious task

» Only specific data (web session data and Stateful Session Beans) is replicated and stored
across the cluster

« The protocol internals used for establishing the communication across instances haven't
aged well with the side-effect of performance degradation over the lifetime of the cluster

Clustering and High Availability Improvements in Payara Server 5

High availability is a concept familiar to most developers and server administrators. For mission-crit-
ical or high-performance applications and services it is imperative to coordinate a high-availability
strategy so that the business is not affected in case of failure or that its performance is degraded
during high load peaks. Payara Server comes equipped with the concept of a Domain Data Grid
which has the following responsibilities:

« Share the data across all the instances in the domain and replicate such data in case of
fail-over
« Provide a centralized configuration for all instances in the domain

12

®
rpavgra GlassFish to Payara Server 5 Migration Guide

On top of the Domain Data Grid, applications and resources can be assigned to multiple groups
called Deployment Groups. These provide the following features:

« Function as a deployment "target", meaning applications and resources deployed to a
deployment group are deployed automatically to all instances in the group

« Allow controlling of multiple instances in the domain with a single action (e.g. start/stop all
instances in the group)

This provides many more flexible clustering options than clusters in GlassFish; it enables an easy way
to combine options for dynamic formation of a lightweight cluster suitable in scalable environments
with allowing more control over instances and deployments via Deployment Groups.

The Domain Data Grid is powered by Hazelcast shipped with Payara Server and is a new concept
compared to GlassFish clustering. It allows dynamic formation of a cluster suitable in scalable envi-
ronments, without any additional configuration when adding new instances to the data grid. This
isn't possible with GlassFish clustering, which requires modifying the domain configuration when
adding each new cluster instance.

Deployment Groups are like clusters in GlassFish. However, Deployment Groups are built on top
of the Domain Data Grid and thus are powered by Hazelcast. Unlike clusters in GlassFish, which
are based on Shoal (itself implementing the GMS protocol) which has been completely removed in
Payara Server 5. The configuration and administration commands for clusters in GlassFish are still
supported by Payara Server 5 so that it is easy to migrate them. However, clusters in Payara Server
5 created and managed this way run on the same technology as Domain Data Grid and behave as
any other Deployment Group. The older traditional clusters are deprecated and not used by default
for new clustering configurations. They may be removed in future major Payara Server versions.
Deployment Groups and their associated administration commands provide a complete replacement.

Domain Data Grid in Payara Server 5

In order to overcome all clustering challenges in GlassFish, Payara Server 5 introduces the concept
of Domain Data Grid. The Domain Data Grid provides an in-memory data structure that is distributed
amongst all Payara Server instances within a Payara Domain. The Data Grid is highly available, highly
scalable, and enables in-memory data storage and replication among all Payara Server instances
in a domain.

If you use Shoal Clustering in GlassFish, you can continue managing the same clusters in Payara
Server 5 with the same administration commands, however they won't use the underlying Shoal/
GMS technology but instead will run with the assistance of Hazelcast and behave in a similar manner
to Deployment Groups. Although this brings additional benefits, it also means that some features
supported in GlassFish are not supported in standard open source version of Payara Server. A nota-
ble feature which is missing is secure communication among cluster instances over SSL/TLS. This
is available to Payara Enterprise customers for an additional license fee for Payara Scales.

13

payara’

In Payara Server 5, Hazelcast is enabled by default to power all the clustering options (Hazelcast
is also a requirement to use other features like the JCache API or using Hazelcast as a data store
for Web Sessions Persistence for example). This means that, by default, all instances in the domain
will automatically join the Domain Data Grid and benefit from its features, including session rep-
lication, distributed caches and an embedded Hazelcast grid. Instances do not have to be manually
added to the data grid. The Domain Administration Server (DAS) will detect all running instances and
coordinate all corresponding communication between them. The DAS can also display information
about all instances in the Data Grid either by using asadmin commands or the Admin Console as on
the following picture:

Dwia Gred Insiances

The Domain Data Grid will be composed of running instances only. By default, all instances created
in a domain join the data grid when started. The Domain Data Grid can also contain instances that
are not configured in the domain if they are configured to connect to the same data grid.

The instances that join a data grid are categorized in the following types:

« DAS: The Domain Administration Server itself

« INSTANCE: Individual instances that are part of the same domain as the DAS or are from a
separate domain

« MICRO: Payara Micro instances that explicitly connect to the domain grid.

While the Domain Data Grid is very flexible, only a single grid exists within the domain. All resources
associated to a Domain Data Grid are shared by all instances in the data grid. Moreover, each instance
in the data grid is managed separately and applications are also deployed separately to each instance.
This is completely acceptable, sometimes even desirable in a dynamic scalable environment.

payara’

However, the Domain Data Grid itself doesn't provide all of the features of the old Shoal clustering
model. That's why Payara Server 5 introduces the concept of Deployment Groups.

Deployment Groups work as an extension to the Domain Data Grid functionality: A deployment group
is a managed collection of instances that share the same applications and resources. This collection
of instances can provide load-balancing and fail-over functionality as an extension to the Data Grid,
effectively making them work in a similar vein to Shoal clusters in GlassFish.

Daploymant Group

You can see above an example of a deployment group configuration. While instances instance-1
and instance-2 are in the deployment group called test-dg, a third instance called instance
-3 is not part of it and needs to be managed separately.

GlassFish has a specific distinction for two types of instances:

 Cluster Instances, which are the instances created directly under a cluster and are exclusive
to each cluster and their life cycle is tied to that of the cluster directly.

« Standalone Instances, which are the instances that do not belong to a cluster. Standalone
instances are completely isolated from within each other, which means that they do not
share resources nor applications. Each standalone instance must be managed separately.

In Payara Server 5 however, there is no explicit distinction for instances regarding the context of
the Domain Data Grid and Deployment Groups. All instances created under this model are treated
effectively as standalone instances for the purposes of management and administration. This means
that the same administration commands that manage an instance life cycle (create-instance,
delete-instance, etc.) in GlassFish will work in the same manner on Payara Server 5. The main
distinction is that instances on Payara Server 5 will automatically join the Domain Data Grid and can
be added to Deployment Groups. On GlassFish, standalone instances can't be added to a cluster
Shoal cluster. Cluster instances in Payara Server 5 still exist as part of the old Clustering Model that
is only present for legacy purposes and they behave very similar to other standalone instances
grouped in a deployment group.

®
%vgra GlassFish to Payara Server 5 Migration Guide

This distinction must be clarified in case your GlassFish has standalone instances. When migrating
your domain to Payara Server 5, these instances will still work correctly but will join the Domain
Data Grid automatically. They will provide space for the shared replicated memory unless they are
configured as lite instances, which don't provide storage for the shared memory.

Lite instances of Domain Data Grid are instances, which don't keep any shared data in their heap
but still can access shared memory which is available on other instances in the grid. Lite instances
are part of the data grid as all other instances, have access to the shared memory and all other grid
features as all other instances. You can turn any existing standalone instance into a Lite instance.
Though, be careful when doing that if you rely on the shared memory. At least one non-lite instance
must be running to keep the memory in the grid. Having too few non-lite instances could also result
in too much heap of those instances consumed by the shared memory. You can turn an instance to
a lite instance with the following asadmin command:

asadmin > set-hazelcast-configuration --lite=true

Summary of Clustering Options in Payara Server 5

Domain Deployment Clusters

Data Grid Group (Deprecated)

) © ©

Hazelcast-Based

Running member instances visible in Domain
Data Grid

Managed only from the DAS

Can be a deployment target

Member instances can be started/stopped
together

Supports load balancing and fail-over

Instances can have different configuration

Member instances visible in the list of
instances

Instances can connect dynamically
(without configuring the cluster)

Compatible with GlassFish cluster
admin commands

Can be joined by a Payara Micro instance

© ® ® ©® OB® ® ®® 6
® ® ® © OO0 ©® ®©60 6
® 0 ® ® ®¥O O©® ©®©60 6

16

payara’

1) only if they are in the same domain

2) if Payara Micro is started with the same discovery mechanism as Payara Server. By default, it uses a

different mechanism.

The following entities can join a Domain Data Grid:

Instances that are part of a Deployment Group

« Instances created for a Cluster (Deprecated)

Payara Micro Instances

Instances in a separate domain configured to join the same Data Grid Group

The following entities can join a Deployment Group:

« Instances created directly when creating the Deployment Group
» Instances created separately and added to the Deployment Group

The following entities can join a Cluster (Deprecated):

- Instances created exclusively for the cluster.

As stated previously, Payara Server 5 will understand the configuration of Shoal Clusters migrated
from GlassFish. If your domain contains a deprecated cluster, you can start that same domain in
Payara Server 5 without any changes. The main difference is that Payara Server 5 will use a Domain
Data Grid under the covers to provision the cluster instead of the Shoal/GMS technology. Otherwise
the cluster will function as before with the exception that it's managed in the Admin Console under

a page called Clusters (Deprecated):

Domain: domain1

User: admin

£< payara server ®

B instances
® Nodes
. Clusters (Deprecated)
n'n cluster
- Applications
© Lifecycle Modules
B Monitoring Data
B Resources
@ Concurrent Resources
P Connectors
JDBC
+" JMS Resources
Y JUNDI
B8 JavaMail Sessions

B+ Resource Adapter Configs

Server: localhost

Home About...*

Clusters (Deprecated)

Create and manage Payara Server clusters. A cluster is a named collection of Payara Server instances that provides high a
balancing, and failure protection.
Clusters are deprecated in Payara 5 and we recommend you migrate to Deployment Groups

Deprecated Clusters (1)

Delete Start Cluster Stop Cluster

Select Configuration Instances

clu nfig
| E instance1 # Running

®
%vara GlassFish to Payara Server 5 Migration Guide

This is a convenience feature of Payara Server 5 that is used to ease migrations from GlassFish.
Traditional clusters are now managed in Clusters (Deprecated) view on the Admin Console as
shown in the image.

If you had established secure communication over SSL/TLS among the instances of your Shoal
cluster in GlassFish, keep in mind that this feature is not available in Payara Server 5, so you will
have to leave the communication channel unsecured. If this is a requirement you must fulfill, it is
recommended that you turn in the Domain Data Grid Encryption feature (introduced in release
5.201), which will guarantee that the data that is handled and transferred across instances of the
Data Grid is properly encrypted and secured.

To enable this feature, you must generate a private key that will be used by the data grid to encrypt
this information:

asadmin > generate-encryption-key
And then, manually enable the encryption feature:
asadmin > set-hazelcast-configuration --encryptdatagrid true

More information about the details of how this feature operates can be found in the official Payara
Platform documentation.

Migrate to Deployment Groups

Although clusters from GlassFish should work in Payara Server 5, these types of
clusters are deprecated, and we recommend you migrate to Deployment Groups
instead. Look for how to do it in the following sections.

Migrating from a Standard GlassFish Cluster to a Deployment Group

If you decide to migrate to a Deployment Group, you'll get more flexibility in how you manage your
cluster. Deployment groups are like clusters but, besides no longer creating instances specific to
a cluster, it's possible to create and configure instances individually and later add or remove them
from a deployment group on demand. It's also possible to add the same instance to multiple deploy-
ment groups.

18

https://docs.payara.fish/documentation/payara-server/hazelcast/datagrid-encryption.html
https://docs.payara.fish/documentation/payara-server/hazelcast/datagrid-encryption.html

®
ﬁ)vgra GlassFish to Payara Server 5 Migration Guide

You can migrate a cluster from GlassFish to a Deployment Group directly during an upgrade to Payara
Server 5. Or you can keep the cluster during the upgrade (as described in the previous section) and
later migrate a deprecated cluster in Payara Server 5 to a Deployment Group, whichever option best
fits your overall migration plan.

If you want to keep the configuration and behaviour of a deployment group as similar as possible to
the migrated cluster, follow these steps:

1. Copy any custom cluster configuration

 If your cluster contains custom configuration, copy it to the configuration associated
with the cluster (e.g. cluster-config)
 Alternatively, instead, you can note it down to apply it later to a new deployment group

2. Convert all cluster instances to standalone instances

« While the domain is stopped, manually modify the domain.xml file on the DAS and
remove the <clusters> element completely, including all child elements

« This will also delete all clusters. If you have more clusters, you can only delete the
<cluster> element in <clusters> which corresponds to the migrated cluster

3. Create a deployment group

 Start the domain

» Create a deployment group (you may give it the name of the migrated cluster, if the clus-
ter no longer exists)

« Add the instances, which belonged to the previous cluster, into the new deploy-
ment group

» Create any custom resources on the deployment group if needed (if you didn’t copy
them to the cluster configuration earlier)

You can now do the same actions on the new deployment group like you could do on the previous
cluster. For example, the following actions are equivalent:

Cluster

Action Deployment group

Admin Console Asadmin CLIcommand J Admin Console Asadmin CLI command

Start
tart all start-deploy-
sa a Deployment Poy Start Cluster start-cluster
Instances ment-group

Group

Stop
Stop all stop-deploy-
. P Deployment praepoy Stop Cluster stop-cluster
Instances Group ment-group

19

®
%vgra GlassFish to Payara Server 5 Migration Guide

New instance in

the group. create-instance
Create an New instance create-instance
instance And existing add-instance-to- jnthecluster --cluster
instance to the deployment-group
group

Some configuration that's available for clusters is also available for deployment groups. This config-
uration is applied on top of the configuration of each server instance in the group, such as deployed
applications, resources and properties. All other configuration settings that are missing for a deploy-
ment group can be applied to the configuration of individual instances by editing their configuration
(e.g. a configuration named cluster-config for example) or by other means:

« Batch configuration is available in the Batch page of each individual configuration (in the
sidebar in Admin Console)

- JMS Physical destinations can no longer be configured from within Payara Server. Instead,
you can use the imgadmin or imgcmd tools in the mg/bin directory and connect to an MQ
server used by the deployment group directly. To add a JMS resource to the whole deploy-
ment group, add the deployment group to the resource’s targets

Mapping Between JSON and Java Objects

Description of the Changes in JSON Mapping

One of the main benefits of Java EE 8 is that it includes the JSON-B (JSON Binding) API. This API
is used to define a serialization of POJOs into JSON payloads and vice-versa. The Jackson library
is a commonly used third-party alternative which served as inspiration for this new API. One of the
main advantages of JSON-B in Payara Server 5 is that it is integrated out of the box with the JAX-RS
container. It is used for automatic serialization and de-serialization of POJOs that are part of the
payload managed in both JAX-RS REST service requests and responses. All of this is defined by stand-
ard JSON-B mapping and doesn't rely on a non-standard mapping provided by custom extensions.

GlassFish (prior to version 5) also provides automatic mapping between Java objects and JSON
within the JAX-RS container, but compared to Payara Server 5, this mapping is derived from JAX-B
(Java XML Binding) API, which is designed for mapping between Java objects and XML and isn't
convenient for the JSON format. Furthermore, while this mapping is standardized for XML payloads,
it's not generally supported on other application servers for JSON payloads. In GlassFIsh, the default
implementation of a JSON serialization provider for JAX-RS (Jersey) is an EclipseLink library called
MOXy provided by the EclipseLink component. Jackson also provides a JAX-RS mapper which works
very well with GlassFish and is often used as an alternative to Moxy.

If your applications declare JAX-RS components that rely on the automatic serialization and mar-
shaling mechanism provided by JAX-B annotations, keep in mind that these annotations will be

20

http://json-b.net/
https://github.com/FasterXML/jackson
https://www.eclipse.org/eclipselink/#moxy

®
%vara GlassFish to Payara Server 5 Migration Guide

ignored on Payara Server 5 by default! This is due to the switch from JAX-B to JSON-B as the default
provider for JAX-RS JSON payloads.

Keep Using JAX-B Mapping for JSON in Payara Server 5

It's understandable that in some cases, refactoring definitions for mapping between Java classes
and JSON payloads can require a lot of effort. In this case, it's possible to configure your application
to continue using the JAX-B annotation configuration on Payara Server 5 as it was on GlassFish. In
order to do this, you'll have to add the following Servlet context parameter to your web.xml deploy-
ment descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.
jcp.org/xml/ns/javaee/web-app 3 1.xsd"
version="3.1" metadata-complete="false">
<context-param>
<param-name>jersey.config.jsonFeature</param-name>
<param-value>MoxyJsonFeature</param-value>
</context-param>

</web-app>

With this configuration, JAX-RS services in your application will support the same mapping with JAX-B
annotations as supported in GlassFish. In addition, JSON-B annotations in the same application if
there are any, would be ignored. Keep in mind that in the future the JAX-B annotation support might
be dropped entirely, so it is best that, at some point, you'll have to refactor your applications to use
JSON-B annotations instead.

Keep Using Jackson 2 Library for JSON Mappings in Payara Server 5

If you use Jackson 2 library for mapping Java classes to JSON payloads in JAX-RS endpoints, you
can keep using it in Payara Server 5.

To continue using Jackson with Payara Server 5, you’ll have to add the following Servlet context
parameter to your web.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>

21

®
rpalljgra GlassFish to Payara Server 5 Migration Guide

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.
jcp.org/xml/ns/javaee/web-app 3 1.xsd”
version="3.1" metadata-complete="false”>
<context-param>
<param-name>jersey.config.jsonFeature</param-name>
<param-value>JacksonFeature</param-value>
</context-param>

</web-app>

You also needed to have all required Jackson 2 dependencies in your application. This is also required
by GlassFish so the Jackson dependencies should already be in your application and you don't have
to take any further action.

With this configuration, JAX-RS services in your application will support the same mapping with
the Jackson 2 annotations as supported in GlassFish. In addition, JSON-B annotations in the same
application if there are any, would be ignored. Note that this configuration is very similar to enabling
the JAX-B mappings described in the previous section.

Migrating from JAX-B Mappings to JSON-B Mappings

Because JSON-B is a standard way of mapping Java objects to JSON payloads it is the best option
when building new applications with Payara Server 5. If you are migrating an application from
GlassFish, it might not be convenient to refactor all your JAX-B mappings to use it but we still rec-
ommend evaluating this option. Refactoring to using JISON-B would give you the advantage of using
awell-integrated and better supported API for JISON mappings and confidence that your application
uses standard and predictable API that will not break after upgrades to newer versions of Payara
Server or even in case of migration to any other server.

If you want to maintain the same configuration for the JSON serialization and marshalling of your
entities in your applications with JISON-B as you now have with JAX-B, you will have to refactor your
code to use the corresponding JSON-B annotations.

Applications that use the JAX-B API for configuring JSON serialization in Payara Server 4 (using the
default MOXy provider) will have annotated classes like this one:

@XmlAccessorType (XmlAccessType.FIELD)
@XmlRootElement (name = "payload")
public class MyPayload {

22

®
rpavgra GlassFish to Payara Server 5 Migration Guide

@XmlElement (name = "payloadID", required = true)

private String id;

@XmlAttribute (name = "editable")

private Boolean editable;

The same entity configured using JSON-B in Payara Server 5 would look like this:

public class MyPayload {

@JsonbProperty (value="payloadID", nillable=false)

private String id;

private Boolean editable;

You will notice that the same entity configured using JSON-B annotations is easier to understand
and has less declarations. For getting started with the JISON-B API, you can follow the official Getting
started with JSON Binding guide.

It's also possible to keep the JAX-B annotations together with the new JSON-B annotations. This
is recommended if:

 your application maps the same entity to both XML and JSON

« you want to compare how the new JSON-B mapping performs compared to the
JAX-B mapping

- you want to keep the possibility to easily revert to using the JAX-B mapping with Payara
Server 5 in the future

Built-in Databases

Payara Server 5 includes the H2 database, which isn’t present in GlassFish. The H2 database is
used for the default JDBC data source for applications instead of the Derby DB used in GlassFish.
A data source for Derby DB is still present in Payara Server 5 but usage of Derby DB is deprecated
and not supported.

23

http://json-b.net/docs/user-guide.html
http://json-b.net/docs/user-guide.html

®
%vgra GlassFish to Payara Server 5 Migration Guide

Description of the Changes in Built-in Databases

Some of the internal features of Payara Server, either features exposed as part of the standard set
of APIs or features specific to Payara Server, require the use of a data store to persist data after
the server shuts down. GlassFish comes bundled with Derby database (also known as JavaDB)
that is used to make these features work correctly, and this database is exposed as a set of two
JDBC resources:

» Aconnection pool called TimerPool which connects to an embedded Derby database.
Since this is an embedded database, the server will start this database inside the same JVM
process used for the DAS. This pool is exposed as jdbc/ TimerPool JDBC datasource
but is not to be used by applications by default since it is intended to use by the EJB Timer
Service to store persistent timers' information.

« A connection pool called DerbyPool, which connects to a standalone Derby database. It's
associated with the JDBC data source identified by jdbc/ default. This data source is
used as the default data source for applications.

However, Derby DB is currently considered an outdated product with several production-aware
issues (like inconsistent concurrent updates and unexpected row-locking). These issues motivated
us to gradually replace this database with a more robust solution in Payara Server 5, which is H2
database. The following is a list of the changes introduced in Payara Server 5:

« Thereis a new JDBC connection pool called H2Poo1 which is used to configure database
connections to an embedded H2 database.

« The jdbc/ default JDBC data source is now linked to this new connection pool instead
of the DerbyPool connection pool

« The TimerPool connection poolis configured to connect to an embedded H2 database
as well but it uses an XA Data source resource configuration to allow multiple instances to
connect to it concurrently. This connection pool is intended to be used by the EJB Timer
Service separately from the default connection pool.

e The DerbyPool connection pool no longer exists.

« Thereis a new connection pool named samplePool that is configured to connect to a local
Derby server. This connection pool can be used to quickly connect to a local unsecured
Derby database for development purposes only.

e Thereis a new JDBC data source named jdbc/sample that uses the previous connection
pool for the local Derby database.

« The asadmin commands start-database and stop-database will control the life
cycle of the local H2 database instance instead of the old Derby database

Production Environments

Neither Derby DB nor H2 DB are recommended for production usage.H2 is

included within Payara Server to simplify application development. For production
environments, we recommend using a separate production-ready relational database
configured as a JDBC resource and its corresponding JDBC connection pool.

24

®
%vgra GlassFish to Payara Server 5 Migration Guide

H2 Database
H2 DB is installed in the directory $ { PAYARA INSTALL DIR}/h2db.

To start the standalone H2 database, use the following asadmin command:
asadmin> start-database
To stop the H2 database, use the following asadmin command:

asadmin> stop-database

Derby Database

There is no embedded Derby installation in Payara Server 5.

Keeping the Data Source Configuration from GlassFish

As stated previously, usage of Derby DB is not supported. If you are upgrading to
Payara Server 5 with your domain configuration copied directly from a GlassFish
domain, the data source and connection pool configuration will not work correctly
due to the embedded Derby installation missing from the server files, so it is
recommended that you migrate the old data source and connection pool configuration
settings to the ones that rely on H2 instead. Read the following section to find

out how.

Migrating to the New Data Source Configuration in Payara Server 5

If your domain relies on the default data source, you need to make sure that your applications will
work with the H2 DB instead of the Derby DB. To do this, follow these steps:

25

payara’

1. Before the domain is started, proceed to manually modify the domain.xml configuration file
and edit the default connection pools. Locate the resources tag element and identify the
default connection pools:

<resources>
Lles o ==
<jdbc-connection-pool datasource-classname="org.apache.derby.jdbc.
EmbeddedXADataSource" name="_ TimerPool" res-type="javax.sgl.XADataSource">
<property name="databaseName" value="${com.sun.aas.instanceRoot}/1lib/
databases/ejbtimer"></property>
<property name="connectionAttributes" value=";create=true"></property>
</jdbc-connection-pool>
<jdbc-connection-pool is-isolation-level-guaranteed="false" datasource-
classname="org.apache.derby.jdbc.ClientDataSource" name="DerbyPool" res-
type="javax.sql.DataSource">
<property name="PortNumber" value="1527"></property>
<property name="Password" value="APP"></property>
<property name="User" value="APP"></property>
<property name="serverName" value="localhost"></property>
<property name="DatabaseName" value="sun-appserv-samples"></property>
<property name="connectionAttributes" value=";create=true"></property>
</jdbc-connection-pool>
L= o ==2

</resources>

Now, replace these definitions with the default connection pool settings used for the H2 databases:

<resources>
Rl== o ==2
<jdbc-connection-pool datasource-classname="org.h2.jdbcx.JdbcDataSource"
name="_TimerPool" res-type="javax.sql.XADataSource">
<property name="URL" value="7jdbc:h2:${com.sun.aas.instanceRoot}/lib/
databases/ejbtimer; AUTO SERVER=TRUE"></property>
</jdbc-connection-pool>
<jdbc-connection-pool is-isolation-level-guaranteed="false" datasource-
classname="org.h2.jdbcx.JdbcDataSource" name="H2Pool" res-type="javax.sqgl.
DataSource">
<property name="URL" value="7jdbc:h2:${com.sun.aas.instanceRoot}/lib/
databases/embedded default;AUTO SERVER=TRUE"></property>
</jdbc-connection-pool>
Rl== o ==2

!!ﬁ : ®
pOllerO GlassFish to Payara Server 5 Migration Guide

</resources>

2 —Locate the default IDBC resource definition for the default datasource only in the same tag element:

<resources>

Rl o ==

<jdbc-resource pool-name="DerbyPool" object-type="system-all" jndi-
name="jdbc/ default"></jdbc-resource>

Rlo= o ==

</resources>

Replace its definition with the Payara Server 5 equivalent:

<resources>

Ll== o ==>

<jdbc-resource pool-name="H2Pool" object-type="system-all" jndi-
name="jdbc/ default"></jdbc-resource>

== o ==>

</resources>

Keep in mind that when changing the internal database from Derby to H2 will make the data that is
stored in the old database inaccessible by the new state of the server. In most cases this won't be
a problem since currently Payara Server uses this internal database to store the information of per-
sistent timers and the historic information of executed batch jobs. Persistent timer information can
be skipped without issues in a controlled migration (the server will create new data if the database
is empty), so the only relevant set of data that you might be interested to keep would be historic

batch jobs data.

If you are interested in keeping this data, our recommendation is that you export this data by creating
the relevant SQL data manipulation scripts that inserts the data in the H2 database. Both Derby and
H2 have a similar SQL syntax, so this should not take that much effort.

HTTP/2 Protocol Support

Payara Server 5 introduces support for the HTTP/2 protocol as part of the new Servlet 4.0 API. This
protocol is enabled by default on the default HTTPS network listeners included within the serv-

er's configuration.

27

®
%vgra GlassFish to Payara Server 5 Migration Guide

Changes Related to HTTP/2 Protocol

Support for HTTP/2 protocol is enabled on secure HTTP network listeners by default in Payara Server
5. This version of HTTP protocol brings a lot of performance improvements like:

- Request and response multiplexing to reduce the number of required connections
« Header compression to reduce the amount of data

« Server Push to send multiple related files faster

« Binary encoding of commands to improve security

Additionally, the protocol requires encryption with an improved version of Transport Layer Security
(TLSv1.2 at a minimum). That's why it can only be enabled on secured HTTP network listeners in
Payara Server.

While some web frameworks used for client applications and web browsers can leverage HTTP/2
features to improve overall network performance, HTTP/2 support is not guaranteed to be stable
enough in all cases, which could cause issues for your applications. During migration to Payara Server
5, we recommend disabling HTTP/2 support on all HTTP listeners first in order to avoid encountering
unwanted errors. After your application runs successfully on Payara Server 5, you can test it with
HTTP/2 enabled to verify if it doesn't introduce any issues.

By design, HTTP/2 does not support authentication using client certificates. In HTTP/2, a client can
have multiple outstanding requests. Without some sort of correlation information, a client is unable
to identify which request caused the server to request a certificate. If you need to use client certif-
icates for authentication, then you should disable HTTP/2 and keep it disabled.

Keeping HTTP 1.1 Protocol for All Listeners

The safest way to upgrade HTTP listeners from GlassFish to Payara Server 5 is to keep the same
configuration for all HTTP listeners using the HTTP 1.1 protocol untouched and ensure that HTTP/2
is disabled completely.

If you are using the Admin Console, you can disable the HTTP/2 protocol for network listeners in
the Network Config = Protocols option. After choosing the listener, go to the HTTP tab and un-select
the HTTP/2 option:

28

payara’

Heador Bafler Lengih:

Max Foim Pos Size:
Max Save Poat Sine

URl Emci=ding:

HTTP Bax Cestetuii

HTTRT initdal Window Sire

HTTPZ Max Frame Payload Sice:

HTTPS Max Heador Liv Size;

If you prefer using the command line, you can disable the HTTP/2 protocol on a network listener by
executing the following asadmin command:

asadmin> set configs.config.server-config.network-config.protocols.

protocol.<listener-name>.http.http2-enabled=false

The main advantage of using the commercial edition of GlassFish over the Open Source edition is
that you could enjoy the benefits of using GlassFish Server Control, which is a suite of proprietary
features that improves performance, enables fine-grained monitoring and enables more secure and

®
%vgra GlassFish to Payara Server 5 Migration Guide

highly available production deployments. The GlassFish Server Control is composed of the following
six features:

« Load Balancer Configurator Plugin

« Domain Administration Server Backup and Recovery
« Coherence Active Cache

e Monitoring Scripting Client

 Oracle Access Management Integration

« Performance Tuner

Since the GlassFish Server Control is only available for the commercial version of GlassFish; these
features are licensed separately to the core GlassFish so Payara Server doesn’t include these features.

If you use these features intensively, the following sections describe tools and techniques available
that can reproduce the functionality of these features and achieve the same objectives.

Coherence Active Cache

GlassFish can integrate with Oracle Coherence (an in-memory data grid caching solution) as a replace-
ment for the default in-memory HTTP state replication provided by Shoal.

Payara Server ships with Hazelcast (another in-memory data grid) out-of-the box. It is preconfigured
and used as the clustering method. More information on the versatility of Hazelcast and related
features like Domain Data Grid, Deployment Groups and JCache, which build on top of Hazelcast,
can be found in the Payara Server documentation.

Monitoring Scripting Client

With the Monitoring Scripting Client, operations staff can write JavaScript scripts that enable moni-
toring probes that help track application performance characteristics, troubleshoot functionalissues,
follow the state of internal components and services and observe the application behavior in general.

Payara Server, on the other hand, brings multiple monitoring tools to the table:

« An embedded JMX Server with support for AMX MBeans that can be used by users to mon-
itor specific JVM and server statistics in real-time by plugging a compatible JMX console
client (JVisualVM, Zulu Mission Control, etc.)

« MicroProfile Metrics support. Thanks to the Metrics API, users can implement automated
real-time metrics generation on their application code that can be consumed by modern
metric aggregation software tools like Prometheus. Additionally, Payara Server allows

30

https://docs.payara.fish/
https://docs.payara.fish/documentation/user-guides/monitoring/enable-jmx-monitoring.html
https://docs.payara.fish/documentation/microprofile/metrics.html

®
%vgra GlassFish to Payara Server 5 Migration Guide

automatic exposure of any JMX/AMX MBean properties as MicroProfile vendor-scoped met-
rics, easing the effort that the user must put in configurating this aspect.

« A Healthcheck service that can monitor the status of basic environment resources (CPU,
RAM, heap size, disk space, etc.) and notify users when certain thresholds are met.

« A customizable monitoring console that can be configured to feed data to the user in real
time and is powerful enough to aggregate data from multiple Payara Server nodes and
show them in graphic way via the Web console. This is one of the newer features of the
Payara Platform and it is intended to become a full featured production solution for Payara
Enterprise production environments.

Oracle Access Management Integration

GlassFish Server includes a special security provider, implemented as a custom JASPIC (JSR-196,
Java Authentication Service Provider Interface for Containers) module that allows enterprise appli-
cations to authenticate and take advantage of the Single Sign On functionality provided by its inte-
gration with Oracle Access Manager.

Since Oracle Access Manager is a proprietary product, there is no special integration provided for it,
however Payara Server itself contains a simple Single Sign On solution that can be easily configured
using standard JAAS mechanisms. When SSO is enabled, all web applications deployed on the same
virtual server will share authentication state, so if a user logs in to a web application, they will be
implicitly logged for all other remaining applications that require the same authentication.

Performance Tuner

The GlassFish Performance Tuner is a special tool that can be used to automatically tune in the
settings of a standalone instance or cluster configuration group by answering a series of questions.
GlassFish will take your answers and suggest settings to you and give you the option of either apply-
ing all changes directly to the configuration or using the provided instructions to manually apply
these changes.

There is, at the time of writing, no replacement feature for the performance tuner plugin however,
sinceitis designed to be used in a one-off way to tune your domain for production, we have provided a
new bundled domain and domain template called production which has some sensible defaults
already tuned with the common confitions of a production environment in mind.

Load Balancer Configurator Plugin

The Load Balancer plugin is a utility which integrates with a web server (Oracle iPlanet Web Server,
Oracle HTTP Server, Apache Web Server and Microsoft IIS) with GlassFish such that configuration
can be managed from GlassFish rather than from the web server itself.

31

https://docs.payara.fish/documentation/payara-server/health-check-service/
https://docs.payara.fish/documentation/user-guides/monitoring/monitoring-console.html

®
%vara GlassFish to Payara Server 5 Migration Guide

There is no replacement feature for this in Payara Server at the time of writing. We recommend to
manually setup a load balancer using Apache Web Server with the mod_jk Tomcat connector or
configure a Nginx web server with sticky sessions using its available plugins.

Domain Administration Server Backup and Recovery

Both the commercial and open source editions of GlassFish can backup and restore domains. The
added value of the GlassFish plug-in is that it allows you to schedule when backups take place natively
within GlassFish. A further benefit is that these scheduled backups do not necessitate stopping the
domain while the backup takes place.

There is no replacement feature for this in Payara Server, but we plan to add similar features to make
it easier to backup, recover and upgrade domains on demand as part of Payara Enterprise.

Features to Consider During or After Migration

There are lots of new features added in Payara Server and not available in GlassFish which can help
take your application into the future after you have successfully migrated.

Slow SQL Logging

A crucial production feature which allows you to easily detect when a query to the database exceeds
a specific time. This enables you to drill down to the actual line of code impacting production per-
formance enabling rapid triage and fix of production performance issues in the database or ineffi-
cient SQL code in your Java EE applications. Slow SQL logging is enabled for a specific datasource
in the Admin Console in the advanced properties. When a query exceeds the configured threshold,
a WARNING is output into the server log along with a full stack trace of the code that invoked the
SQL, allowing rapid identification of the offending code.

Payara Health Check Service

Another powerful tool that makes it easier for the Operation Teams to run Payara Server in produc-
tion by periodically checking Host CPU Usage; Host Memory Usage; Payara Server’s JVM Garbage
Collections; Payara Server’s JVM Heap Usage; CPU Usage of individual threads. If there is a problem
with any of these metrics and they exceed a configurable threshold then a Warning, Error or Critical
message is logged to the server’s log file, enabling operations teams to rapidly detect problems or
work out what happened after problems have occurred.

32

®
%vgra GlassFish to Payara Server 5 Migration Guide

Request Tracing Service

Ideal tool for developers, it helps you to identify performance issues and their causes to successfully
solve them. It allows you to trace requests through the server. All the following request types are
traced when the service is enabled: REST (JAX-RS endpoints); Servlet (handling HTTP requests);
SOAP Web Service Requests; WebSocket; execution of EIB timers; inbound JMS message handled
by a message-driven bean; JBatch job is created; a new task is executed in a managed executor.
Request Tracing comes with full Asadmin CLI and Admin Console integration, so you shouldn’t have
to go hacking around in the domain.xml configuration file. You can read more about the Request
Tracing Service in Payara Server documentation.

Working with Third-Party Libraries

A significant source of pain for both users of GlassFish 3.x and 4.x is conflicting 3rd party libraries,
which may be found in other frameworks like Spring or Grails (based on Spring). Conflicts can arise
when you want to use a specific version of a library, but a different version is already included in
Payara Server. A common example (until recently) was that Weld shipped an old version of Guava.
Since Weld provides the CDI implementation for Payara Server, any application which included Guava
would conflict with the server's version and problems would arise.

Payara Server now includes an isolated classloader for both EAR and WAR deployments, so that
3rd party libraries packaged with the application are preferred over those from the server.

There is also enhanced control over implicit CDI scanning. By default, as part of the specifica-
tion, deployments are scanned for any CDI beans which are recognised by having "Bean Defining
Annotations". Sometimes, this scanning can cause unwanted effects due to the annotations in
3rd-party libraries triggering the scan, so Payara Server now provides ways to disable implicit CDI
scanning from a deployment and to explicitly disable scanning of specific JARs.

Payara Micro
Payara Micro is our microservice-oriented product and works a bit differently to the traditional appli-

cation server. It enables you to run war files from the command line without any application server
installation. Payara Micro is small, <80 MB in size and incredibly simple to use. With its automatic

33

https://docs.payara.fish/
https://www.payara.fish/products/payara-micro/

®
rpavgra GlassFish to Payara Server 5 Migration Guide

and elastic clustering, Payara Micro is designed for running enterprise Java applications in a modern
containerized/ virtualized infrastructure.

Using the Hazelcast integration each Payara Micro process will automagically cluster with other
Payara Micro processes on the network, giving web session resilience and a fully distributed data
cache using Payara’s JCache support. Payara Micro also comes with a Java API so it can be embed-
ded and launched from your own Java applications - see how.

Cloud Deployment Improvements

One of the main disadvantages of GlassFish clustering is that they are not convenient and user-
friendly to use in common cloud deployment scenarios, especially in environments where container
technologies form the backbone of the topology (like Docker or Kubernetes, for example). Payara
Server 5 clustering includes several features in the form of better clustering integration with cloud
environments and friendly configuration options that cover most common use cases in cloud envi-
ronments. Example of discovery modes provided by the Domain Data Grid include:

« TCPIP: Discovering instances that live in a list of hosts identified by their IPv4 or IPv6 net-
work addresses

« DNS: Discovering instances that live in a list of hosts identified by host name

« Multicast: Allowing instances to “talk” to the cluster by using the multicast protocol and
join it themselves

- Kubernetes: Discovering instances that live in hosts within a Kubernetes cluster

One important feature to discuss when mentioning cloud environments is elasticity, which is the
capability of a cloud-environment to scale-up or down depending on the expected user load (and
other factors). Elasticity is one of the main draws of most cloud environments, and the Domain Data
Grid is equipped to allow elastic arrangements on most of these cloud environments. An important
thing to consider when developing an elastic arrangement with the Payara Platform, is that by default
both Payara Server and Payara Micro support elastic clustering via the Domain Data Grid. Payara
Server also supports grouped deployments but grouped deployments do not support elasticity since
a deployment group targets a specific set of instances that have to be centrally configured. Such
deployment groups are therefore more suitable as a replacement for a traditional centrally managed
clustering (more information on how to use Data Grid and Deployment Groups will be provided in
the following sections). Payara Micro on the other hand does not support the deployment group
concept; the life cycle of any deployed application is tied to the life cycle of the instance itself. This
is a design choice because Payara Micro is built specifically for elastic cloud environments.

34

https://blog.payara.fish/introducing-payara-micro

®
%vgra GlassFish to Payara Server 5 Migration Guide

Default Role/Group Mapping

GlassFish already can set default group to role mapping in the security configuration for the server,
but there is no portable option that can be set in the deployment descriptors. Payara Server intro-
duces an additional setting for deployment descriptors to explicitly enable or disable the default role
mapping. This will mean that more configuration necessary for your application can be maintained
within the deployment itself, rather than in the application server.

Other Production Features

Payara Server has a full web-based administration console (Admin Console) which is fully fea-
tured and provides a single view of all clustered and standalone Payara servers. It also has a fully
scriptable Command Line Interface for the administration of a Payara domain and a full REST based
management console. Payara Server provides a full set of monitoring JIMX MBeans enabling simple
and rapid integration to any JMX based monitoring program to provide historical metrics and alerts.
And on top of that, Payara Server supports rolling upgrades of Java/Jakarta EE applications and
can be fully supported in production and development 24/7 with 1-hour response time for priority
one issues.

Known Issues After Migrating

There are a few known issues now that can arise in your environment after executing a successful
migration to Payara Server 5, which are listed in the following table along with their causes and
recommended workarounds:

Issue Cause Workaround

PrimeFaces The Server Push Disable the Server Push features in all relevant

applications feature of the HTTP network listeners.

encounter HTTP/2 protocol is

unexpected errors known to interfere There is no clear solution at the moment in order
with PrimeFaces’ to make both features work in co-existence, so

pushing mechanisms if there are other applications that require the
use of HTTP/2 Server Push, it’s best to define a
customized virtual-server where the application
should be deployed within a separate network
listener.

35

®
%vgra GlassFish to Payara Server 5 Migration Guide

Client Certificate By design, the Disable the HTTP/2 protocol in all relevant
Authentication does protocol does network listeners.
not work when used not support the
with HTTP/2 CLIENT-CERT If HTTP/2 usage is a priority, switch out to a better
authentication suited authentication method.
method

How is Payara Server Better than GlassFish?

« Always open source and production ready. Download a production-ready version of
Payara Server or Payara Micro.

« Get support directly from Engineers. No outsourced helpdesk.

« Worldwide adoption. Trusted by global companies, including some from the Fortune
500 list.

« Enjoy a 10-year software lifecycle. No need to upgrade a year or two after you implement
a Payara solution.

« Monthly releases, bug fixes, and patches. Rolled into Payara Enterprise products making
Payara Server the best option for production Jakarta EE (Java EE) applications and Payara
Micro the best option for containerized Jakarta EE applications.

« Security alerts and fixes. Receive notification of security issues and fixes in all versions of
the Payara Platform.

- Docker support for rapid deployment of virtualised Java EE applications.

 Vibrant community and high activity on the Payara GitHub Profile.

Feature GlassFish 5.x Payara Server Enterprise 5
License Open Source Open Source
Release frequency Irregular Monthly
Releases in 2019 1 22: 4 community stream, 12 stability
stream, 8 feature stream
« Instant emergency & backported
Security fixes Infrequent fixes for support customers
« As soon as possible for community
Production support ® @)

36

®
leIJOrO GlassFish to Payara Server 5 Migration Guide

Feature GlassFish 5.x Payara Server Enterprise 5
Migration & Project Support ~ (X) @)
CRlmgeIehns Upgrades Irregular As needed
(e.g. Tyrus, Mojarra)
- Eclipse " Nethoans
Supported IDEs » Netbeans

« IntelliJ IDEA

* IntelliJ IDEA « Visual Studio Code

JCache, Domain Data Grid, Payara

Caching tools Scales (additional cost)

@ via Hazelcast

©
©
©
©
©

@ Payara Micro

Automatic Clustering
Asadmin command recorder
Slow SQL logging
Healthcheck service
Request tracing

Monitoring logging

Microservices distribution

ONONONONONONONONEC

MicroProfile support Compatible with MicroProfile

Docker support Community provided Official images

HTTP & HTTPS port

auto-binding @ (Payara Micro only)

Generate Uber JAR @ (Payara Micro only)

©

Production-tuned domain
template

Upgrade tool

Jakarta EE Compatible

®0® ® ® ®
ONONQ)

Embedded Data Grid

37

®
%vgra GlassFish to Payara Server 5 Migration Guide

Migrating from GlassFish to Payara Server
Should Be Relatively Painless!

After following the instructions detailed in this guide you should be able to run your GlassFish
domains in Payara Server 5. Keep in mind that these instructions showcase the necessary steps to
have a working domain in Payara Server 5, so additional features that can be used to increase the
productivity of your applications should be considered when further developing them. We recom-
mend that you browse through the official product documentation to have a better understanding
of these features.

All things considered, migrating from GlassFish to Payara Server should be an easy and painless
process. There may be minor hiccups in certain edge-cases, but the majority of the work that may
need to be done will be reserved for making use of new features, provided by either Java/Jakarta
EE 8 APIs, Payara Server itself, or even Java 8 language features.

If you're still at the early stages, however, the fact that Payara Server is still, operationally, largely
similar to GlassFish means that you can "try-before-you-buy" and see how easy it is to swap over
simply by using Payara Server to start up your existing domain. It is a simple and easy thing to do
and can give you good early insight into just how easy it will be to get started with Payara Server

38

https://docs.payara.fish/

®
%vgra GlassFish to Payara Server 5 Migration Guide

Where to Get More Migration Help

Hands-On Assistance for Payara Enterprise Customers

For additional help with the migration from Payara Server 4 to Payara Server
le.JQrQ® 5, Payara Enterprise customers can enlist the services of Payara Accelerator

consultancy. Download our Payara Accelerator Upgrade Guide to learn more
about our consultancy solution.

[ACCELERATOR

Run the Payara Platform in Production

If you are planning to use Payara Platform in production, make sure to use the fully supported and
stable Payara Server Enterprise or Payara Micro Enterprise. Included in your Enterprise subscription:

Choice of support options:

« Migration & Project Support
» 24x7 support
» 10x5 support

Eclipse, GlassFish, and MicroProfile are trademarks of Eclipse Foundation, Inc.

Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or other coun-
tries. Docker, Inc. and other parties may also have trademark rights in other terms used herein.

Kubernetes is a registered trademarks of The Linux Foundation in the United States and/or other countries.
Hazelcast is a trademark of Hazelcast, Inc. All other trademarks used herein are the property of their respective owners.

© 2020 Payara Services Ltd. All rights reserved.

sales@payara.fish +44 207 754 0481 www.payara.fish

Payara Services Ltd 2021 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

39

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://info.payara.fish/upgrade-data-sheet?hsCtaTracking=eebaa3c5-29fb-4fcd-9af1-a16935252492%7Ce93574ed-cd35-4b2e-bf7c-e86a5bafa9c2
https://info.payara.fish/upgrade-data-sheet?hsCtaTracking=eebaa3c5-29fb-4fcd-9af1-a16935252492%7Ce93574ed-cd35-4b2e-bf7c-e86a5bafa9c2

	Introduction
	Why Choose Payara Server Enterprise?
	Migration Options from GlassFish 3 to
Payara Server 5
	Migrating from GlassFish 3.x to Payara Server 5.x
	Migrating from GlassFish 4.x to Payara Server 5.x
	Migrating from GlassFish 3.x to Payara Server 5.x in 2 Steps
	Migrating from GlassFish Server Control

	Main Advantages of Payara Server 5
	Migration Process to Payara Server 5
	Preparation
	Migrating a Domain from GlassFish using Backup and Restore
	Additional Considerations for Nodes and Instances
	Special Considerations for Payara Server 5.201

	Clustering and High-Availability
	Summary of Clustering in GlassFish
	Clustering and High Availability Improvements in Payara Server 5
	Domain Data Grid in Payara Server 5
	Deployment Groups in Payara Server 5
	Standalone Instances
	Summary of Clustering Options in Payara Server 5
	Keeping a Standard GlassFish Cluster
	Migrating from a Standard GlassFish Cluster to a Deployment Group

	Mapping Between JSON and Java Objects
	Description of the Changes in JSON Mapping
	Keep Using JAX-B Mapping for JSON in Payara Server 5
	Keep Using Jackson 2 Library for JSON Mappings in Payara Server 5
	Migrating from JAX-B Mappings to JSON-B Mappings

	Built-in Databases
	Description of the Changes in Built-in Databases
	H2 Database
	Derby Database
	Keeping the Data Source Configuration from GlassFish
	Migrating to the New Data Source Configuration in Payara Server 5

	HTTP/2 Protocol Support
	Changes Related to HTTP/2 Protocol
	Keeping HTTP 1.1 Protocol for All Listeners

	How to Replace Features of GlassFish Server Control
	Coherence Active Cache
	Monitoring Scripting Client
	Oracle Access Management Integration
	Performance Tuner
	Load Balancer Configurator Plugin
	Domain Administration Server Backup and Recovery

	Features to Consider During or After Migration
	Slow SQL Logging
	Payara Health Check Service
	Request Tracing Service
	Working with Third-Party Libraries
	Payara Micro
	Cloud Deployment Improvements
	Default Role/Group Mapping
	Other Production Features

	Known Issues After Migrating
	How is Payara Server Better than GlassFish?
	Migrating from GlassFish to Payara Server Should Be Relatively Painless!
	Where to Get More Migration Help
	Hands-On Assistance for Payara Enterprise Customers
	Run the Payara Platform in Production

