
Using Payara Server
with Docker

User G
uide

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible.

Using Payara Server with Docker

Contents

Get Started with Docker 1

Installation of Docker 2

Using Docker Containers 3

Checking Container Status 3

Starting a Container 4

Stopping a Container 5

Removing Old Containers 6

Checking Container Logs 6

Executing Commands In Containers 6

Writing Docker Images 7

FROM 7

ENV 8

RUN 8

ADD 9

ENTRYPOINT 9

CMD 10

Building a DockerFile 10

Payara Server Docker Images 11

Using the Payara Server Full Docker Image 12

Deploying Applications 12

The Container Lifecycle 13

Environment Variables 14

Running Commands 16

The Default Entrypoint 16

Clustering Payara Server Docker Containers 17

Using the Payara Server Node Docker Image 18

Managed Container Usage 18

Unmanaged Container Usage 20

Deploying Applications 21

The Container Lifecycle 21

Environment Variables 22

References	 24

Using Payara Server with Docker

1

Docker is an open-source tool used to create, deploy and manage small portable containers. Containers
are similar to virtual machines (VM), but where VMs run an entire operating system inside, the host
containers only package the required components. Because of this they are extremely lightweight;
they start up in a fraction of the time of a regular VM and waste very little extra resources on top of
the main process being run inside them. They are used primarily as a lightweight way to assure that
the program will run the same regardless of host platform. Docker can also manage virtual network-
ing between containers, as well as health checks, to make sure each container is running properly.

Payara provides several Docker container images that can be used as-is to run your applications on
Payara Server or Payara Micro (the Payara Platform). Or, you can create your own Docker images
based on the provided Payara Docker container images. This guide will demonstrate the basic usage
of Docker, as well as some example configurations using the Payara Server Docker images.

At the time of writing this guide, the most recent Payara Server release is 5.191. Some functionality
may differ if you’re using a different version.

Get Started with Docker

Before explaining how to use Payara Server with Docker, we’ll explain what Docker is and how to
use in most common scenarios.

Here’s some terminology we’ll be using:

Image	 An image is a snapshot of how a container should look before it starts up. It will
define which programs are installed, what the startup program will be, and which
ports will be exposed.

Container	 A container is an image at runtime. It will be running the process and the con-
figuration defined by the image, although the configuration may differ from the
image if any new commands have been run inside the container since startup.

Docker Daemon	 The Docker daemon is the service that runs on your host operating system.
Containers are run from the Docker daemon. The Docker CLI (command line
interface) just interacts with this process.

DockerHub	 DockerHub is a central repository where images can be uploaded, comparable
to what Maven Central is for Maven artifacts. When pulling an image remotely, it
will be pulled from DockerHub if no other repository is specified.

Repository	 A repository in the context of Docker is a collection of Docker images. Different
images in the repository are labelled using tags.

Using Payara Server with Docker

2

Tag	 A tag distinguishes multiple images within a repository from one another. Often
these tags correspond to specific versions. Because of this, when no tag is spec-
ified when running an image, the ‘latest’ tag is assumed.

Entrypoint	 The Entrypoint command is run when the container starts. Containers will exit as
soon as the entrypoint process terminates.

Installation of Docker

To run Docker containers, Docker must first be installed on your operating system. To install Docker,
you can follow the OS specific guide from the Docker documentation1.

In case your system is Microsoft Windows® or Mac®, download and run the installation program for
Docker Desktop according to the instructions.

In case your system is Linux:

1.	 Install the Docker program according to the instructions for your Linux® distribution.
2.	 Start the Docker daemon - this is specific to your Linux distribution. On Ubuntu®, you would

do it by sudo systemctl start docker.
3.	 By following the above steps, you will have Docker setup and ready to run. If however you

want to perform steps further to the basic installation such as: enabling Docker on boot,
running Docker without sudo, or allowing remote connections to your Docker daemon, then
the post-install guide on the Docker website2 details how to do these steps and more.

•	 After installing Docker on Linux, you need to run all Docker commands with sudo, e.g.
sudo docker info. To run Docker without sudo, add your user into a group called
docker and restart your computer.



https://youtu.be/2iPjVUdF_DE
https://docs.docker.com/install/
https://docs.docker.com/install/linux/linux-postinstall/
https://www.youtube.com/watch?v=2iPjVUdF_DE&feature=youtu.be

Using Payara Server with Docker

3

Once you’ve got Docker installed, you can run the following command to verify your install (on Linux,
you might need to prepend the command with sudo):

docker run hello-world

This will run the ‘hello-world’ Docker container in the foreground, which is a minimal image with a
C program to print the message it does. Since the container then exits immediately, it won’t block
the terminal.

Using Docker Containers
The following sections will detail the basic container management required to use Docker. The full
functionality is covered in the command guide on the Docker Website3.

Checking Container Status

Running the following command will show all currently running containers:

docker ps

You’ll see an output similar to the following:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

3dc34ab42b5c hello-world “/hello” 16 minutes ago Exited (0) 16 minutes ago gifted_noyce

Any container can be referenced in commands either by its ID directly, or one of its aliases listed on
the right. If none were specified on the command line, it’ll be assigned a random one.

If you don’t see anything from here, it means that no containers are running. If you expect to see
a process here but you don’t, it likely means it errored out and stopped, since Docker containers
terminate as soon as the entrypoint program exits. For scenarios like this, the Docker daemon use-
fully keeps containers stored after they’ve closed. You can run the following command to see all
containers, even after they’ve finished:

docker ps -a

This will also list stopped containers. To use a container with the same alias, these stopped containers
must be removed. See the Docker rm command later for details on how to do this.

https://docs.docker.com/engine/reference/commandline/docker/

Using Payara Server with Docker

4

Starting a Container

Using the hello-world image as a start point, we’ll start a container:

docker run hello-world

This runs the ‘hello-world’ container, assuming the latest tag. You can specify a custom tag by
appending the tag name after the image name, separating them with a colon. The container will run
in the foreground but since the process exits almost immediately it won’t block the terminal. If the
image isn’t found locally, it will be downloaded from DockerHub (as with the docker pull command).
The following parameters are common when running containers:

Parameter Name Parameter Value Description

--rm N/A Denotes that once this container has fin-
ished running, it should be automatically
removed from the list of closed processes,
freeing up the name for reuse.

--name Container name Specifies a name for the container once
running. This will replace the automatically
assigned name e.g. gifted_noyce. These
names are unique identifiers, and as such
cannot be shared between containers,
even stopped ones.

-p <host_port>:<container_port> Specifies a host port to map to a spe-
cific port on the container. For example,
running HTTPD (which hosts an Apache
HTTPD instance on port 80) with the
parameter -p 9000:80 will expose the
HTTPD server on port 9000 of the host
machine.

-d N/A Without this parameter the container is run
in the foreground. It will block the terminal
process, and print the container logs to the
terminal. With this option, the process is
forked to the background, and will simply
print the container ID instead of the con-
tainer logs.

-v <local_dir>:<container_dir> Allows a container to use the local filesys-
tem, by mounting the specified local direc-
tory to the specified container directory.

Using Payara Server with Docker

5

For a full list of parameters, see the official documentation4.

Basic Networking

When running a container, the -p option explained above maps a port on the host to a port on the
container being run. If no port mappings are specified the container is still accessible, but only from
the host running the Docker daemon. Docker handles a collection of networks; the default one is
named ‘bridge’, and will allow containers running on the same machine to communicate. You can
inspect this network by running the following command:

docker network inspect bridge

This will print out the details of the bridge network, and within that the IPs of containers running on
it. You can read more about Docker networking here: https://docs.docker.com/network/.

Stopping a Container

When you’ve got a container running and it’s visible in the output of docker ps, you can stop the
container using the following syntax:

docker stop <container-id/alias>

This command will send a SIGTERM to the main process running inside the container in order to ter-
minate it. If the main process doesn’t handle SIGTERM signals properly, either because it’s hanging,
or it hasn’t been designed with that in mind, then a SIGKILL will be sent after a grace period (default
10 seconds) if the container hasn’t terminated.

If you need to forcibly stop a container, you can run the following command instead:

docker kill <container-id/alias>

This command kills the container immediately with a SIGKILL. You can change the signal sent by
this command with the --signal option.

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/network/

Using Payara Server with Docker

6

Removing Old Containers

If you try and run a container with the same name twice, you’ll get an exception that looks similar
to the following:

docker: Error response from daemon: Conflict. The

container name "/hello" is already in use by container

"f122e1365f9b545a034676c2764de4bad431466866a6295b6ba8cd1965704b5a". You have to

remove (or rename) that container to be able to reuse that name.

See 'docker run --help'.

To fix this, the old container (that appears with docker ps -a) will need removing. You can remove
this container using it’s name or any aliases assigned to it like so:

docker rm <container-id/alias>

Checking Container Logs

When a container is either running in the background (it has been forked with `docker run -d`), or
it has exited early, it can be useful to see the container logs.

docker logs <container-id/alias>

This will print out the current content of the container logs to the terminal. To follow these logs, add
the -f parameter. To see timestamps with the logs, use the -t parameter.

Executing Commands In Containers

When a container is running, you can start an interactive shell inside the container to execute com-
mands at runtime. This is useful if, for example, you have an image that isn’t quite right and you
want to test exactly what commands need to be run next in the Dockerfile. Alternatively, you can
commit the current status of a container to a new named image. For more details on this, see the
documentation for docker commit5.

docker exec -it <container-id/alias> <command>

https://docs.docker.com/engine/reference/commandline/commit/

Using Payara Server with Docker

7

The command above will execute the given command on the given container. The -it options are
present if you specify the command as being ̀ sh` for example. This makes the command interactive,
which allows an interactive shell process to be run inside the container.

Writing Docker Images
Docker images are written using Dockerfiles. These are text files that describe the building blocks
for any image. They support a simple set of commands that will be run in order to build the image.
Each Dockerfile is built starting from a base image (which is any other image), and each command
in the Dockerfile will create a new image layer. Because of this image layering, downloading new
images is really quick since the same previous layers can be reused. For example, if you download
multiple images built from the Ubuntu image, the Ubuntu image will only be downloaded once. This
section will cover the basics of Dockerfile authoring. For more information on this, see the Docker
official documentation6.

Below is an example of a Dockerfile:

FROM alpine:3.8

ENV test world

CMD echo "Hello $test!"

This image is built from the Alpine image (a minimal Linux distribution made for Docker), and will
print “Hello world!” when run. Dockerfiles will be written in the same format as above, using the
Dockerfile command specified at the beginning of any line. Some basic commands are covered below.

FROM

The FROM command specifies a base image for your custom image. As such it should usually be the
first command in your Dockerfile. Each image is expected to build from another, unless you want to
build every image you write from scratch7 (a 0 byte image that doesn’t even contain a filesystem).
The FROM command follows the following syntax:

FROM <image>[:<tag>]

If no tag is specified, the ‘latest’ tag is assumed. So for example for the Alpine image, FROM alpine:3.8
will run the version 3.8 image, and FROM alpine will use the latest tag, which could be equal to
another tag.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/_/scratch

Using Payara Server with Docker

8

ENV

The ENV command sets an environment variable <key>=<value>. These environment variables will
then be available in all future layers. This command can use either of the following syntax:

ENV <key> <value>

ENV <key>=<value> ...

RUN

The RUN command is used to run commands on the intermediary image. This is used in setup to run
commands that can be run before the container needs to start, for example creating directories or
running CURL to fetch an online resource.

The RUN command, along with some other commands such as ENTRYPOINT or CMD, accept two
forms of syntax since they are used to pass commands to the container. These forms are referred
to as exec form and shell form. The differences are covered below:

Shell Format

The shell format looks as follows:

RUN executable param1 param2

This format will invoke a shell to run the command. This means that the image must contain a shell
to run the command, and that if you do, environment variable substitution will be performed.

Exec Format

The exec format looks as follows:

RUN ["executable", "param1", "param2"]

This format will run the executable directly. No variable substitution will be performed, which can
sometimes be useful in preventing strings being changed by the shell.

Using Payara Server with Docker

9

The RUN command can use either of these forms. When running in shell form, a backslash must be
used to continue the RUN instruction onto the next line. To reduce the number of layers produced
it’s recommended to run as many RUN commands as possible in the same layer, for example like so:

RUN mkdir -p /opt/test/config && \

 mkdir -p /opt/test/lib

There is no functional reason to have a layer containing only one of these commands, so they are
merged to reduce layer complexity.

ADD

The ADD command is used to add a file from a local directory or remote URL to the fileystem of an
image, so that it can be used at runtime.

ADD [--chown=<user>:<group>] <src> <dest>

If a local file in a recognised compression format is used, it is automatically unpacked as a directory.
If the chown parameter is used, the file will be owned by the specified user at runtime.

While the ADD command can specify a remote URL as a source, this is discouraged in favour of doing
so from a RUN command:

RUN curl -Sl http://test.com/big.tar.gz && \

 tar -xzC /big.tar.gz && \

 rm -f /big.tar.gz

This is because the files not needed after extraction can be deleted as shown above.

Because of the automatic unpacking of the ADD command, the COPY command is recommended
when this is not required. The COPY command functions in the same way as ADD, but without
support for remote files or compressed file unpacking.

ENTRYPOINT

The ENTRYPOINT command specifies the executable to run on container start. It supports the same
exec and shell forms supported by the run command. When used in shell form (not recommended),
the ENTRYPOINT is run using /bin/sh -c. Because of this, signals will not be passed to the subprocess.

Using Payara Server with Docker

10

This means that your application will not respond to docker stop. There is no default ENTRYPOINT,
meaning that the CMD is used as the entrypoint unless one is specified.

CMD

The CMD command also specifies a command to run on container startup, but behaves depending
on how it’s specified. The CMD command has 3 forms. The first two are the same shell and exec
forms as ENTRYPOINT and RUN. The third form is when the exec form is while the ENTRYPOINT is
specified in exec form. In this use case, the CMD command will specify default parameters to the
ENTRYPOINT process. In all other cases, the CMD command sets the command to be executed on
container start.

Building a DockerFile
Once you’ve got a Dockerfile written, you must build the image to run it. Building the image will
incrementally build images by running the commands contained in the Dockerfile. You can build an
image using the following command:

docker build [OPTIONS] PATH

To see the full syntax, see the official reference page8. An example usage would be building an image
called ‘test’ from the directory containing the Dockerfile using the following command:

docker build -t test .

The command will look for the default Dockerfile called ‘Dockerfile’ by default. You can then run the
container as with a remote image with docker run.

https://docs.docker.com/engine/reference/commandline/build/

Using Payara Server with Docker

11

Payara Server Docker Images

The Payara Platform provides the following distributions as Docker container images for both Zulu
JDK-8 and Zulu JDK-11 that can be used as-is to run your applications on the Payara Platform:

•	 Payara Server Full
•	 Payara Micro
•	 Payara Server Node
•	 Payara Server Web

The Payara Server Web image is the same as the Full image but using Payara Server Web distribu-
tion. Instructions will be the same for both. The Payara Server Node image is a server-full image
customised for use as an instance in a bigger domain, connecting to and registering itself against a
separate DAS. Configuration instructions for this image are different to those of the server-full and
server-web images.

You can also create your own Docker images based on the provided Payara Docker container images.

Docker images for Payara Platform Community Edition are available on DockerHub, while customers
can access Payara Enterprise Docker Images in our Nexus repository under the repo ‘payara-docker’.
Instructions for using the private Payara Enterprise Docker repo are available in the Customer Hub
Support Portal.



https://youtu.be/FrYQjQyIzLs
https://hub.docker.com/u/payara/
https://support.payara.fish/hc/en-gb/restricted?return_to=https%3A%2F%2Fsupport.payara.fish%2Fhc%2Fen-gb%2Farticles%2F360011830878-Working-with-the-Payara-Enterprise-Docker-Registry
https://support.payara.fish/hc/en-gb/restricted?return_to=https%3A%2F%2Fsupport.payara.fish%2Fhc%2Fen-gb%2Farticles%2F360011830878-Working-with-the-Payara-Enterprise-Docker-Registry
https://www.youtube.com/watch?v=FrYQjQyIzLs&feature=youtu.be

Using Payara Server with Docker

12

Using the Payara Server Full Docker Image
The Payara Server Full Docker Image can be found on DockerHub, see here for more details: https://
hub.docker.com/r/payara/server-full/.

A container created from the Payara Server Full Docker image will run the Payara Server production
domain as the main process. You can run the container with no configuration changes using the
following command:

docker run -p 8080:8080 payara/server-full

The ‘latest’ tag is used by default.

This will simply run Payara Server inside the container, and map port 8080 to the host machine. You
can visit localhost:8080 and see the request forwarded to the container. To visit the admin console
on a localhost port you would also need to map port 4848. To see how to access Payara Server, see
the networking section in the Docker container introduction above.

When using the administration console or asadmin utility, the default username and password
are both ‘admin’.

When you run the Payara Server docker container with the default settings, Payara
Server will assume all host resources are available to it and it will allocate all the
available memory. To restrict how much memory and cpu can be used by the docker
container, use the options --cpus (nnumber of CPUs allowed to use) and -m (amount
of memory allowed to use), for example like this:

docker run --cpus=1.5 -m=1024m -p 8080:8080 payara/server-full

Deploying Applications

You can deploy via the admin console as with a non-containerized Payara Server instance (an instance
not running in a Docker container). If you don’t want to extend the Dockerfile with your own, the
Payara Server Full Docker image also provides a directory from which applications will be deployed
on startup. To utilise this, mount a directory using the following command:

docker run -p 8080:8080 -v /local/application/directory:/opt/payara/deployments

payara/server-full

https://hub.docker.com/r/payara/server-full/
https://hub.docker.com/r/payara/server-full/

Using Payara Server with Docker

13

The default entrypoint for the container will deploy all deployment files found in /opt/payara/deploy-
ments, so mounting a directory there that contains an application will deploy it on startup.

Alternatively, you can build your own Docker image from a Dockerfile to do the same:

FROM payara/server-full

COPY application.war $DEPLOY_DIR

Running the container produced from this image will also deploy the application on startup. The
image will need rebuilding when the application changes.

The Container Lifecycle

With the default Docker entrypoint, Payara Server Docker container will do the following during
start-up:

1.	 Search for a file with Payara Server commands stored in the file $POSTBOOT_COMMANDS (by
default /opt/payara/config/post-boot-commands.asadmin)

•	 if the file exists and contains commands, these commands will be executed when
Payara Server starts up

•	 you can copy a file with commands into this location when building a custom
docker image

2.	 Search for a file with Payara Server commands stored in the file $PREBOOT_COMMANDS (by
default /opt/payara/config/pre-boot-commands.asadmin)

•	 if the file exists and contains commands, these commands will be executed as Payara
Server starts up

•	 you can copy a file with commands into this location when building a custom
docker image

3.	 Search for all deployable packages in the directory $DEPLOY_DIR and generate a script with
commands to deploy them when Payara Server boots

•	 DEPLOY_DIR is an environment variable which can be modified to search for deploya-
bles in a different directory

•	 all generated deploy commands are appended to the file $POSTBOOT_COMMANDS if
it exists

4.	 If shell scripts with suffix .sh found in $SCRIPT_DIR/init.d directory (by default /opt/
payara/scripts/init.d), they are executed

•	 you can copy your own scripts into that directory when building a custom docker image
or you can mount the directory to your local directory with scripts

5.	 Payara Server starts and executes the $PREBOOT_COMMANDS and $POSTBOOT_COMMANDS
scripts, which by default contains commands to deploy found applications and any cus-
tom commands

•	 Payara Server process listens to all signals sent to the Docker container and correctly
shuts down when you stop the container with docker stop

Using Payara Server with Docker

14

So if you wanted applications to be deployed as usual but the container IP to be printed out initially,
you might create a bash script (test.sh) with the following contents:

#!/bin/bash

ip a

then run the container as follows:

docker run -v /directory/with/script:/opt/payara/scripts/init.d payara/server-

full

This would cause the container IP details to be printed out before starting the server.

Environment Variables

The following environment variables are available for use. When edited either in a Dockerfile or
before the startInForeground.sh script is ran, they will change the behaviour of the Payara
Server instance.

•	 JVM_ARGS - Specifies a list of JVM arguments which will be passed to Payara Server in the
startInForeground.sh script.

•	 MEM_MAX_RAM_PERCENTAGE - Specifies the maximum percentage of container RAM that
Payara Server will be able to use.

•	 MEM_XSS - Specifies the size of the JVM Thread Stack Size.
•	 DEPLOY_PROPS - Specifies a list of properties to be passed with the deploy com-

mands generated in the generate_deploy_commands.sh script, For example
‘--properties=implicitCdiEnabled=false’.

•	 POSTBOOT_COMMANDS - The name of the file containing post boot commands for the Payara
Server instance. This is the file written to in the generate_deploy_commands.sh script.

•	 PREBOOT_COMMANDS - The name of the file containing pre boot commands for the Payara
Server instance.

The following environment variables shouldn’t be changed, but may be helpful in your Dockerfile.

Using Payara Server with Docker

15

Variable Name Value Description

HOME_DIR /opt/payara The home directory for the payara user.

PAYARA_DIR /opt/payara/appserver The root directory of the Payara installation.

SCRIPT_DIR /opt/payara/scripts The directory where the generate_deploy_
commands.sh and startInForeground.sh
scripts can be found.

CONFIG_DIR /opt/payara/config The directory where the post and pre boot files
are generated to by default.

DEPLOY_DIR /opt/payara/
deployments

The directory where applications are searched for
in generate_deploy_commands.sh script.

DOMAIN_NAME production The name of the Payara Server domain.

PASSWORD_FILE /opt/payara/
passwordFile

The location of the password file for asad-
min. This can be passed to asadmin using the
--passwordfile parameter.

If you want to change the admin password instead of using the default one, it’s not
enough to change the password stored in the file $PASSWORD_FILE. You also need to
use the following command to change the password before starting Payara Server:

${PAYARA_DIR}/bin/asadmin --user ${ADMIN_USER} --passwordfile=/
mypasswordfile change-admin-password --domain_name=${DOMAIN_NAME}

And you also need to supply the file /mypasswordfile with the current admin
password (in the AS_ADMIN_PASSWORD variable) and the new password (in the
AS_ADMIN_NEWPASSWORD variable). Then you need to change the password in the
file $PASSWORD_FILE so that Payara Server starts with the correct password.

You can add this command in your custom Docker image (using the RUN Dockerfile
command) or you can place it in a shell script in the init.d directory inside the
Docker container.

Payara Server also allows you to externalise various aspects of configuration through the usage of
variable replacement, utilising environment variables, system properties, and MicroProfile Config

Using Payara Server with Docker

16

properties. This allows you to, for example, extend the image with additional environment variables
and reference them within your application like so:

@DataSourceDefinition(name="java:global/ExampleDataSource",

 className="com.mysql.jdbc.jdbc2.optional.MysqlXADataSource",

 user="${ENV=mysql.user}",

 password="${ENV=mysql-db-password}",

 databaseName="${ENV=MYSQL_DBNAME}",

 serverName="localhost"

)

Running Commands

If you need to modify the configuration of Payara Server in your custom Docker images, you can do
it by adding asadmin commands into the following files:

•	 $POSTBOOT_COMMANDS (by default /opt/payara/config/post-boot-commands.asadmin)
- these commands will be executed after Payara Server is started and ready to accept
requests but before applications are deployed

•	 $PREBOOT_COMMANDS (by default /opt/payara/config/pre-boot-commands.asadmin) -
these commands will be executed before Payara Server engine is started. This mode usually
works only for the set asadmin command to modify the configuration using dotted configu-
ration names

For example, the following Dockerfile would instruct Payara Server to enable the HealthCheck Service
after the core server is booted:

Dockerfile

FROM payara/server-full

RUN echo 'healthcheck-configure --dynamic=true --enabled=true' > $POSTBOOT_

COMMANDS

The Default Entrypoint

If a JVM runs as PID 1 it will not reap zombie processes correctly. Because of this, the Payara Docker
image uses Tini as an init: https://github.com/krallin/tini. This is a simple init script that responds
to signals and reaps zombie processes correctly. The default CMD argument for tini runs the
${SCRIPT_DIR}/entrypoint.sh (default SCRIPT_DIR is /opt/payara/scripts) script in exec mode,
which in turn runs the following:

https://github.com/krallin/tini

Using Payara Server with Docker

17

•	 ${SCRIPT_DIR}/init_1_generate_deploy_commands.sh. This script outputs deploy
commands to the post boot command file located at $POSTBOOT_COMMANDS (default
$CONFIG_DIR/post-boot-commands.asadmin). If the deploy commands are already
found in that file, this script does nothing.

•	 ${SCRIPT_DIR}/init_*.sh scripts that you may provide for custom use as waiting or
initializing during startup, before Payara starts up.

•	 ${SCRIPT_DIR}/init.d/*.sh scripts that function the same as the above scripts, but is
initially an empty directory to allow volume mounting to provide these scripts.

•	 ${SCRIPT_DIR}/startInForeground.sh. This script starts the server in the fore-
ground, in a manner that allows the Payara instance to be controlled by the docker host. The
server will run the pre boot commands found in the file at $PREBOOT_COMMANDS, as well
as the post boot commands found in the file at $POSTBOOT_COMMANDS.

Under usual circumstances, you shouldn't modify the entrypoint or the CMD argument for a Payara
Docker container. Instead, specify additional shell scripts in the init.d directory or Payara Server
commands in the $POSTBOOT_COMMANDS file, or modify provided environment variables.

Clustering Payara Server Docker Containers

One method of connecting multiple Payara Server Docker containers into a cluster is using TCP/
IP Hazelcast® discovery. This will allow multiple Payara Server Docker containers to join the same
data grid, although they will not be able to change the configuration of each other or join deploy-
ment groups etc. This method therefore relies on the configuration and application being contained
entirely in your Docker image.

To cluster using this method, first find the IPs that will be used by your Docker containers. This is
explained in the earlier section 'Basic Networking'. Knowing this, you must enable TCP/IP discovery
on the instances. This can be done either using your Dockerfile, or an init script dropped in /opt/
payara/scripts/init.d. Assuming that your Docker containers are assigned IPs of between 172.17.0.2
and up, the following Dockerfile will produce containers that cluster in the aforementioned fashion:

FROM payara/server-full:5.184

RUN echo 'set configs.config.server-config.hazelcast-config-specific-

configuration.enabled=false' > $PREBOOT_COMMANDS

RUN echo 'set-hazelcast-configuration --clusterMode tcpip --tcpipmembers

172.17.0.1-99:4900' > $POSTBOOT_COMMANDS

Using Payara Server with Docker

18

First, in order to avoid starting Hazelcast with the default configuration, Hazelcast is disabled by
executing the set command before server is booted. Then, after the server is booted, Hazelcast
data grid is enabled and configured to use the tcpip cluster mode.

Payara Server also support DNS and Kubernetes® discovery modes which will be more suitable for
docker-compose and Kubernetes environment respectively. More information on discovery modes
can be found here: https://docs.payara.fish/documentation/payara-server/hazelcast/discovery.html.

For more details on all methods of clustering Payara Server Docker containers, see our guide Clustering
Payara Server in Docker.

Using the Payara Server Node Docker Image
The Payara Server Node Docker Image can be found on DockerHub, see here for more details: https://
hub.docker.com/r/payara/server-node

A container created from the Payara Server Node Docker image will create and start an Payara Server
full instance as the main process, registering itself to a separate Payara Server DAS (containerised
or non-containerised). Containers using this image can either be started manually via the Docker
CLI or from the Payara Server DAS, and can be used in one of two ways: as a managed container or
as an unmanaged container.

Regardless of using containers based on this image in a managed or unmanaged capacity, this image
requires secure administration to be enabled:

Enable Secure Admin

> asadmin change-admin-password

> asadmin enable-secure-admin

> asadmin restart-domain

Managed Container Usage

This usage describes the ability for the Payara Server DAS to control and manage the Docker con-
tainers themselves, not just the server instances running within them.

This requires the Docker REST API endpoint to be exposed, which can be done by adding the desired
host and port settings to the DOCKER_OPTS environment variable (or the command that starts the
Docker server):

DOCKER_OPTS="-H=0.0.0.0:2376"

https://docs.payara.fish/documentation/payara-server/hazelcast/discovery.html
https://hub.docker.com/r/payara/server-node
https://hub.docker.com/r/payara/server-node

Using Payara Server with Docker

19

This usage scenario is designed to mirror the traditional usage of SSH nodes, allowing a user to
create, use, and delete Docker Containers as if they were simply Payara Server instances.

This entails setting up a Docker Node. From the admin console, this can be achieved from Nodes >
New... and selecting a type of Docker. You will then be prompted to provide:

•	 A node name
•	 The host name or IP address of the machine you wish to create the Docker containers on
•	 The directory of the nodes within the Docker container (safe to leave blank unless you're

using a custom Docker image)
•	 The installation directory of Payara Server within the Docker container (safe to leave as

default unless you're using a custom Docker image)
•	 The docker image name and tag
•	 The port on the remote machine that the Docker REST API is exposing
•	 The fully qualified path to the password file on the remote machine to bind to the Docker

containers and use for accessing the DAS
•	 Please note this is the path on the remote machine, not the path within the Docker con-

tainer or on the machine the DAS is running on - uploading a file local to the DAS is not
yet supported.

•	 Whether to use TLS to talk to the Docker REST API

It is highly recommended outside of development environments that you secure
the Docker REST API endpoint with a TLS certificate. Help on how to do this can be
found here.

It is also highly recommended that you use the same Docker image tag as that of
your Payara DAS so as to avoid any Payara Server version conflicts (e.g. specify the
5.2020.4 tag if running Payara Server 5.2020.4).

Once you have created your node, you can create instances as you would normally if running in a
non-containerised environment - any instance created using your Docker node as a target will be
created within a container.

The instances are controlled in the same way as non-containerised instances, with the instance state
mirroring that of the Docker container:

•	 Starting a stopped instance will start the Docker container and the instance within it
•	 Stopping a running instance will stop the instance and the Docker container hosting it
•	 Deleting an instance will delete the instance and the Docker container hosting it

If you wish to create, start, and stop containers using the Docker CLI rather than from the DAS, you
can still do so, though you will need to specify a number of configuration options when creating

https://docs.payara.fish/community/docs/5.201/documentation/payara-server/docker/docker-nodes.html#configuring-tls

Using Payara Server with Docker

20

the container (described in the Environment Variables section below). The mandatory ones are the
Payara DAS host and port, the mount for the password file, and the Managed Docker Node name.
Additionally you can also specify the config, deployment group, and instance names to use.

docker container create --mount 'type=bind,source=${path}/passwordfile.

txt,target=/opt/payara/passwords/passwordfile.txt,readonly=true' -e PAYARA_DAS_

HOST=${PAYARA_DAS_HOST} -e PAYARA_DAS_PORT=${PAYARA_DAS_PORT} -e PAYARA_NODE_

NAME=${PAYARA_NODE_NAME} payara/server-node:${PAYARA_VERSION}

docker container start ${CONTAINER_NAME}

docker container stop ${CONTAINER_NAME}

If you delete the container directly from the Docker CLI, the instance that was
contained within that container will remain registered to the DAS until you remove it
using the delete-instance command.

Unmanaged Container Usage

This usage describes the Payara Server instances started within the container registering themselves
to the DAS.

In contrast to Managed Container Usage, you do not need to expose the Docker REST API to use
this image in this manner.

As with the Managed Container usage, it is highly recommended that you use the
same Docker image tag as that of your Payara DAS so as to avoid any Payara Server
version conflicts (e.g. specify the 5.2020.4 tag if running Payara Server 5.2020.4).

This usage scenario is intended for cases where you do not want the Payara Server DAS to have
control over the machine running Docker itself, such as if running in a Kubernetes environment.

Since the Payara Server DAS has no control over the machine the Docker Containers are created
on, the containers are typically created from the Docker CLI directly or via an external orchestra-
tor such as Kubernetes. When creating the containers, you must provide the Payara Server DAS
host and ports, as well as the mount information for the password file, as environment variables.
Additional information such as deployment group, config, and instance name can also be provided
via environment variable:

Using Payara Server with Docker

21

docker container run --mount 'type=bind,source=${path}/passwordfile.

txt,target=/opt/payara/passwords/passwordfile.txt,readonly=true' -e PAYARA_DAS_

HOST=${PAYARA_DAS_HOST} -e PAYARA_DAS_PORT=${PAYARA_DAS_PORT} payara/server-

node:${PAYARA_VERSION}

Instances registered to this DAS in this way only exist for as long as the container is active for - when
the instance or container is shutdown the instance will also be deregistered from the DAS and for-
gotten about.

Currently if the Docker container is stopped manually or via an external orchestrator,
the instance will show as Stopped in the DAS until it is restarted, at which point it will
be cleared away; only instances stopped from the DAS are immediately cleared away.

Deploying Applications

You can deploy via the admin console to any running Payara Server instance as with a non-contain-
erized Payara Server instance (an instance not running in a Docker container), simply targeting the
instances or deployment groups you wish to deploy your application.

If you wish to have the application deploy upon creation and startup of the Payara Server instances
within the containers, you must create a deployment group and deploy the application to this. You
must then pass this deployment group as a parameter to the Docker container to add the instance
to it upon startup:

docker run --mount 'type=bind,source=${path}/passwordfile.txt,target=/opt/

payara/passwords/passwordfile.txt,readonly=true' -e PAYARA_DEPLOYMENT_GROUP=DG1

payara/server-node:${version}

The Container Lifecycle

With the default Docker entrypoint, Payara Server Docker container will do the following during
start-up:

1.	 Determine the Docker Container IP if it hasn't already been provided. If an override hasn't
been provided using the DOCKER_CONTAINER_IP container environment variable, the con-
tainer will resolve the variable itself using the hostname -I command.

•	 The container will always print out what hostname or IP address it is using.

Using Payara Server with Docker

22

2.	 Check if an instance name has been provided using the PAYARA_INSTANCE_NAME container
environment variable.

•	 If no name has been given the container will always create a new Payara Server
instance with an autogenerated name.

•	 If a node name has been provided using the PAYARA_NODE_NAME container envi-
ronment variable, the Docker container will check against the DAS if the details of
said node match the local Docker container environment (e.g. host name), creat-
ing a new node with an autogenerated name if they don't.

•	 If a name has been provided, the container will check to see if the instance has already
been created (in case a container is being reused), creating and registering it to the DAS
if it hasn't.

3.	 The Payara Server instance will be started in the foreground.

Environment Variables

The following environment variables are available for use in either usage scenario. Configuration of
instance settings and deployments is expected to be configured beforehand on the DAS.

Variable Name Default Value Description

HOME_DIR /opt/payara The home directory for the payara user.

PAYARA_DIR /opt/payara/appserver The root directory of the Payara installation.

PAYARA_PASSWORD_
FILE_DIR

/opt/payara/passwords The directory to store password files in.

PAYARA_PASSWORD_
FILE

/opt/payara/pass-
words/passwordfile.txt

The location of the password file for asad-
min. This can be passed to asadmin using
the --passwordfile parameter.

PAYARA_DAS_HOST localhost The IP address or DNS name of the server
hosting the Payara Server DAS (relative to
the container).

PAYARA_DAS_PORT 4848 The admin port of the Payara Server DAS.

PAYARA_NODE_NAME The name of the node to register this
instance to - this is typically only used
by when setting up and using managed
Docker containers. If not specified, one
will be generated and the container will
be used in an unmanaged capacity.

Using Payara Server with Docker

23

Variable Name Default Value Description

PAYARA_CONFIG_NAME default-config The name of the config to attach to
the Payara Server instance. If not spe-
cied, the default behaviour of Payara
Server instances of making a copy of the
default-config config will be created.

PAYARA_INSTANCE_
NAME

The name of the instance to create. If not
specified, one will be autogenerated.

PAYARA_DEPLOYMENT_
GROUP

The deployment group for the instance to
join upon startup.

DOCKER_CONTAINER_
IP

The IP address of the Docker container.
This only needs to be provided if the DAS
would not be able to contact the Docker
container at the address the container
itself contacts itself on.

Payara Server also allows you to externalise various aspects of configuration through the usage of
variable replacement, utilising environment variables, system properties, and MicroProfile Config
properties. This allows you to, for example, extend the image with additional environment variables
and reference them within your application like so:

@DataSourceDefinition(name="java:global/ExampleDataSource",

 className="com.mysql.jdbc.jdbc2.optional.MysqlXADataSource",

 user="${ENV=mysql.user}",

 password="${ENV=mysql-db-password}",

 databaseName="${ENV=MYSQL_DBNAME}",

 serverName="localhost"

)

Using Payara Server with Docker

24

sales@payara.fish +44 207 754 0481 www.payara.fish

  

Payara Services Ltd 2020 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

References

1.  https://docs.docker.com/install/
2.	 https://docs.docker.com/install/linux/linux-postinstall/
3.	 https://docs.docker.com/engine/reference/commandline/docker/
4.	 https://docs.docker.com/engine/reference/commandline/run/
5.	 https://docs.docker.com/engine/reference/commandline/commit/
6.	 https://docs.docker.com/engine/reference/builder/
7.	 https://hub.docker.com/_/scratch
8.	 https://docs.docker.com/engine/reference/commandline/build/
9.	 https://hub.docker.com/r/payara/server-full/
10.	 https://hub.docker.com/r/payara/server-web/
11.	 https://hub.docker.com/r/payara/server-node

Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or other
countries. Docker, Inc. and other parties may also have trademark rights in other terms used herein.

Kubernetes is a registered trademark of The Linux Foundation in the United States and/or other countries.

Hazelcast is a registered trademark of Hazelcast, Inc.

Ubuntu is a registered trademark of Canonical in the United States and/or other countries.

Apache is a registered trademark of the Apache Software Foundation.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

Mac is a trademark of Apple Inc., registered in the U.S. and other countries.

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://docs.docker.com/install/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/commit/
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/_/scratch
https://docs.docker.com/engine/reference/commandline/build/
https://hub.docker.com/r/payara/server-full/
https://hub.docker.com/r/payara/server-web/
https://hub.docker.com/r/payara/server-node

	Get Started with Docker
	Installation of Docker
	Using Docker Containers
	Checking Container Status
	Starting a Container
	Stopping a Container
	Removing Old Containers
	Checking Container Logs
	Executing Commands In Containers

	Writing Docker Images
	FROM
	ENV
	RUN
	ADD
	ENTRYPOINT
	CMD

	Building a DockerFile

	Payara Server Docker Images
	Using the Payara Server Full Docker Image
	Deploying Applications
	The Container Lifecycle
	Environment Variables
	Running Commands
	The Default Entrypoint
	Clustering Payara Server Docker Containers

	Using the Payara Server Node Docker Image
	Managed Container Usage
	Unmanaged Container Usage
	Deploying Applications
	The Container Lifecycle
	Environment Variables

	References

