£ poyora’

Dismiss the Java Myths

Get to Know the Real Jakarta EE

The Payara’ Platform - Production-Ready,
Cloud Native and Aggressively Compatible.

®
&ffal}c\rﬂ Dismiss the Java Myths

Contents
MYTH: Java EE is Outdated and Dead 1
The Platform 2
The Java EE Foundation Technology 3
Key Specifications 3
What is a Jakarta EE Specification? 4
Benefits of Specifications 4
Java EE Transitioned to the Eclipse Foundation 5
Why Did Java EE Move to the Eclipse Foundation? 7
What’s Next for Jakarta EE? 8
Core Profile 8
Full Profile 8
Web Profile 8
Development of the Core Profile 8
Myth: Java EE is Dead and Outdated 9
Dismiss the Myth: Jakarta EE is an Evolving Foundational Technology for Many Enterprise
Frameworks 9
MYTH: Java EE Application Servers Are Heavy 10
What is an Application Server? 10
Traditional Application Server 11
Fat Jar 11
Thin Wars and Container Images 12
Advantages of a Managed Runtime 12
Build Applications — Not Infrastructure 13
What is Considered Heavy? 13
How Does Jakarta EE Compare? 14
What Does it Mean When People Say Java EE is Slow? 15
Myth: Java EE is Heavy 16

Dismiss the Myth: Java EE/Jakarta EE is NOT Heavy, the Overhead Comes from Your
Application 16

Myth: Java EE is Not Cloud-Native 17

®
%QQFO Dismiss the Java Myths

What is Cloud-Native?
Application Server Models
Traditional Application Server
Fat Jar
Evolution of Compute Infrastructure
Traditional Application Deployment in Cloud
Virtual Machines
Containers
Jakarta EE Application Deployment Model
Microservices on Kubernetes
Application Deployment on Kubernetes
Java EE is Definitely Cloud-Native
Cloud Native Runtime - Applying the Jakarta EE Model to the Cloud
How Payara Cloud Works
Developers Can Write Once and Run Anywhere
Myth: Java EE is Not Cloud-Native

17
19
19
19
20
21
21
23
24
25
26
27
28
29
31
31

Dismiss the Myth: Jakarta EE Lets You Write Your Application Once and Run it Anywhere —

Including a Cloud Platform
MYTH: Java EE Doesn’t Do Microservices
Typical Microservices Architecture
Advantages of Building Microservices
Challenges of Microservices
Pragmatic (Realistic) Architecture
Jakarta EE APIS for Microservices
Deployment of Microservices in Jakarta EE
Microservices on Kubernetes Deployment Model
Myth: Java EE Doesn't Do Microservices
Dismiss the Myth: Jakarta EE and MicroProfile Easily Deliver Microservices
MYTH: Java EE Standards Don’t Matter
Java EE History
Open Specifications
MicroProfile and Jakarta EE Standards

31
32
33
35
36
37
38
39
40
43
43
43
44
45
46

®
&ffal}c\rﬂ Dismiss the Java Myths

What is a Working Group? 47
What is a Specification? 47
How A Specification is Developed 48
Open Source TCK License and Process 49
Advantages of Standards and the Open Source Process 50
Myth: Java EE Standards Don’t Matter 50
Dismiss the Myth: Java EE Standards Offer a Choice of Runtime, Vendor Neutrality, and
Longevity 50
MYTH: The Java EE Deployment Model is Out of Date 52
What is in a Java EE/Jakarta EE Application? 52
What is NOT in a Jakarta EE Application? 52
Jakarta EE Runtime Models 53
Traditional Application Server 53

Fat Jar Runtime 53
Advantages and Disadvantages of the Jakarta EE Deployment Model 54
Versioning in the Jakarta EE Application Model 54
Myth: The Java EE Deployment Model is Out of Date 57

Dismiss the Myth: Jakarta EE Deployment Model is Not Outdated - It Has Many Advantages!
57

%QOK\@ Dismiss the Java Myths

Java was created in 1995 and despite being over 25 years old, it’s still one of the most popular and

widely used programming languages in the world. Due to its longevity — many myths around Java
EE (now Jakarta EE) have circulated.

In this eBook, we’ll discuss the most common myths and show you why the programming language is
still relevant, how it keeps up with the changes in the IT world and show there is a future in Jakarta EE.

MYTH: Java EE is Outdated and Dead

One of the most common myths about Java EE is that it’s too old and outdated to use for modern
application development. Fortunately, that’s simply not true and you can continue using your existing
Java EE development skills to modernize your application development.

Java EE and Java have arelated history. Java EE was built for service-side enterprise web application
processing. It was a set of standards that used to follow the Java timeline:

Dec Sept Nov May Dec May Sept Dec
1999 2001 2003 2006 2009 2013 2017 2019 2020 2021

Jakarta EE 9.1

0)}
w w
w w
] o]
- +
E))
]]
x =

[]
Lar L]

Java EE 8

>

<
oo,
<
Q
<

%QOK\@ Dismiss the Java Myths

The Platform

J2EE 1.2 aligned with Java 1.2. In the initial versions, JSPs were created to compete with CGI scripts.
In those days, you built applications with Perl or C code. When J2EE came along, it created the con-
cept of a persistent server instead of CGI, which allowed you to store data and things in memory.

J2EE linked roughly with the release schedule of Java, coming typically 6-12 months after each Java
release. The first couple of releases had a couple years between the releases and then it started to
get a bit longer in between each release.

J2EE turned into Java EE 5 in May of 2006, and when people talk about how they don’t like about
J2EE, they tend to be talking about things that happened before Java EE 5. None of the accusations
for the reasons why they don’t like J2EE, such as deployment descriptors, XML, entity beans, etc. —
none of those things existed after May of 2006 in Java EE 5. This was the first massive modernization
of Java EE. So, if someone claims Java EE is old and outdated because of deployment descriptions
or entity beans, it just means they haven’t kept up with the changes in the industry themselves!

After 2006, Java EE began releasing new modernizations of the API that used predominately anno-
tations. It completely removed the EJB CMP and entity beans model and brought in JPA and those
sorts of capabilities.

Java EE added new capabilities for new platforms with each release. For example, Java EE 7 brought
in web sockets, JSON processing, and the new web technologies available at that point in time.

Java EE 8 brought in servlet 4 which supported HTTP/2, http push, and new capabilities available
in that time frame.

Looking at the timeline, you can see Java EE is not outdated because it has always been tracking
the standards and technologies happening in the current times and building those capabilities into
each new release.

Then, in September 2019, Java EE turned into Jakarta EE, which further modernized the technology.
We’ll cover what changed with Jakarta EE and how it’s evolved within this eBook.

®
%vara Dismiss the Java Myths

The Java EE Foundation Technology

Let’s take a step back and talk about what Java EE is.

It’s more than a platform — Java EE is a set of specifications. And those Java EE specifications are
the foundation technology for a lot of server-side frameworks that may be seen as cooler, faster,
or better than Java EE. But the reality is, because Java EE/Jakarta EE is the standards body that
generates specifications which are appropriate for enterprise, server-side applications, many of the
other modern technologies are using Java EE, such as:

« Application Servers - Application servers are very tied to the full Java EE plat-
form specifications.
« Tomcat -Tomcat is a super powerful servlet container that supports a limited number of
Java EE specifications.
» Microservices Frameworks -Several microservices frameworks use Java EE specifications,
including:
» Dropwizard - based on Jersey (an implementation of JAX-RS) and Hibernate (an
implementation of the Java Persistence API), which are all implementations of Java
EE specifications.
« Micronaut - uses Java x and JAX and beans validation, so it’s based on the core Java
EE APIs.
« Spring - often seen as a Java EE/Jakarta EE competitor, but Spring also uses a lot of the
foundational Java EE/Jakarta EE technology.
« Quarkus and ahead-of-time compilation - based on Java EE/Jakarta EE specifications.

Key Specifications

Jakarta EE is basically a group that creates specifications. The most heavily used specifications
within application servers, and even outside of application servers, include:

- JPA

« Hibernate

- JPA

« EclipseLink

« JAX-RS

« Restful Web Services
« Dropwizard

« Inject (foundational API for dependency injection)
- Bean Validation

- XML Binding

« JSON-Processing

£ payora®

What is a Jakarta
EE Specification?

A specification is different from a framework.

A specification consists of:

« Document - defines the purpose of an
API, how it’s used, various conditions,
and how things should behave.

« API JAR - what you use as
a dependency

» TCK - atest suite that can be run against
an implementation to prove that it
meets the specification

A specification allows for multiple implemen-
tations of the same specification and the same
APL.

For example, EclipselLink and Hibernate are
implementations of JPA, and Payara Server and
JBoss are implementations of the full platform
specification.

A platform, or profile, is basically a specifica-
tion that sweeps up lots of other specifications
within it.

So, a Java EE/Jakarta EE full profile platformis a
set of specifications and other requirements for
how they work together, and a TCK that proves
you can implement it and that your product
meets the specification.

Dismiss the Java Myths

Benefits of Specifications
Why do we care about specifications?

We care because specifications allow for
choice. Specifications opened the door for
innovation and competition. There are many
different technologies that now make use of
Java EE/Jakarta EE, from lightweight runtimes
to big enterprise application servers.

Having the specification offers longevity.
Many specifications are focused on backwards
compatibility. For example, it’s possible to take
an application built in Java EE 5 fifteen years
ago and run it on a modern Payara Server on the
cloud, an edge server, or a traditional machine -
all because of the specification process.

payara’

Transition to
Eclipse

Aug Sept Dec May
2017 2019 2020 2021

& Steve Millidge %ﬁuom@

Java EE 8 came out in 2017 through the Java Community Process (JCP) led by Oracle. This is the
last release by that body and the decision was made to move it to Eclipse Foundation, an open source
foundation.

The Eclipse Foundation released Jakarta EE 8 in 2019. The process took a lot of time going through
the legals, copyright, and all that business-y stuff, as well as transferring the code base to other
servers and creating new release pipelines on the Eclipse Foundation’s infrastructure.

Jakarta EE 8 is deliberately designed to be binary compatible to Java EE 8, so that anything compatible
with Java EE 8 would also be compatible with Jakarta EE 8 - and would run Java EE 8 applications.

Between Jakarta EE 8 and Jakarta EE 9, there was a problem with trademarks and copyrights of, the
javax namespace. The javax namespace for the APIs had to be changed to the jakarta namespace.

To give developers an opportunity to adopt the new namespace without also having to worry about
making new features and compatibilities work, Jakarta EE 9 deliberately contains the same features
as Jakarta EE 8. The only difference is that it was moved to the new jakarta namespace.

Any of the frameworks previously using stand-alone Java EE specifications, such as Spring and
Dropwizard, would ultimately have to adopt the new namespace if they wanted to move forward if
they planned to pick up any later versions of the specifications.

£ payora®

Jakarta EE 9.1 was released as a minor release
in May 2021, which brought the test suite up to
Java 11, which was the latest Long Term Support
(LTS) version of Java at that time.

When you’re looking at this timeline, it may look
like nothing really happened in the enterprise
Java EE space between 2017 and 2021. The
myth that Java EE is outdated, and dead, may
originate from this high-level view of what was
going on with Java during this four-year time
period —there were no new features released, so
people assumed it must be outdated! But that’s
not true. What you don’t see on the Jakarta EE
timeline is the development of MicroProfile.

During this transition between Java EE and
Jakarta EE, many of the vendors who build
Jakarta EE (Payara, RedHat, Tomitribe, IBM, and
others) came together again and discussed the
inability to innovate on the specifications during
this transition period. They wanted to address the
changes going on in the industry, which included
a move toward microservices architectures.

MicroProfile began during this Java EE 8 tran-
sition phase, and since then, MicroProfile has
shipped many APIs specific to microservices use
cases. It’s based on Java EE API foundations
including CDI, JSON-P, JSON-B, and it’s built on
top of Open Tracing, Open API and Config.

The enterprise Java industry has not been on
a standstill since Java EE 8, which is one of the
accusations people throw around to support
their belief that Java EE is outdated — the real-
ity is, MicroProfile and several new APIs were
created during this timeframe to address the
growth of microservices architecture.

Dismiss the Java Myths

Many traditional Java EE application servers
support MicroProfile APIs, including:

- Payara Server and Payara Micro
« Apache TomEE

« OpenlLiberty

» Quarkus

« Thorntail

« WildFly

e kumuluzEE

The application servers support the use of
MicroProfile APIs on top of Java EE.

Payara and other application servers supporting
MicroProfile APIs have been building new capa-
bilities for developers to build new applications.

MicroProfile also allows for innovation in runt-
imes. It allowed for things like Quarkus, Helidon,
and kumuluzEE to use a slightly different model
for developing applications. So, these same
MicroProfile APIs can be used in traditional
application servers as well as other types of
runtimes. (See also “Beginners Overview Guide
to Java Runtimes”)

https://www.payara.fish/resource/beginners-overview-guide-to-java-runtimes/
https://www.payara.fish/resource/beginners-overview-guide-to-java-runtimes/

£ payara®

Dismiss the Java Myths

Why Did Java EE Move to the

Eclipse Foundation?

Developers are rarely interested in the govern-
ance of platforms, but from an enterprise and
organizational perspective, moving Java EE
to the Eclipse Foundation and making it open
source as Jakarta EE, offers many advantages.

The APIs, the TCKs, and the specifications are
open source, which means anyone can build an
implementation without having to pay money to
other people or organizations.

The competition among vendors building more
implementations should further drive innovation.

The Eclipse Foundation is a not-for-profit organi-
zation that offers an open governance of Jakarta
EE, which allows us to all sit together at a table
with rules and collaborate with the other industry
players as a group.

Because it’s a specification and a standard, you
get patent protection if you create an imple-
mentation. There’s a very simple license for it
because it’s open source. The Eclipse Foundation
is an independent referee between the different
players allowing for independent stewardship.
The model allows the creation of multiple, inde-
pendent implementations.

As an end user of Jakarta EE, building an appli-
cation, you don’t want massive innovation on the
API level because that means you have to change
your application every time the API changes. But
you do want solid backwards compatibility.

So, rather than innovate on APIs, vendors like
Payara can compete on how the implementation
works, and that offers you more choice when it
comes to the different models of implementation
and where your applications run. This is proba-
bly the biggest advantage of moving Java EE (or
Jakarta EE, as it is now) to open source with the
Eclipse Foundation.

On the flip side, backwards compatibility can
make innovation and growth of APIs move a
bit slower, as can the collaboration process.
Collaborating with many vendors will always take
longer than having a benevolent dictator leading
a framework. But the other difference is, open
governance offers longevity. If one vendor quits,
you still have all the others contributing to the
growth of Jakarta EE.

Moving Jakarta EE to the Eclipse Foundation is
a huge industry achievement that has taken two
to three years. It now serves as a foundation for
the whole industry.

If you look at all of the compatible implementa-
tions of Jakarta EE 8 you can see there are 15
different implementations of the full platform
created by 12 different companies. This is proof
that Jakarta EE is definitely not a dead industry
body.

There’s a lot of work going on — 15 implementa-
tions and 12 companies! Ranging from Eclipse
GlassFish (predominantly maintained as an
implementation that passes the TCK to prove
that we can release Jakarta EE), but also big
industry players like RedHat, Oracle, and IBM,
and important players like Payara, and regional
companies that serve their regional markets as
well.

All of these vendors have taken the open source
specifications, built a product, and certified
that their implementation works and meets the
platform requirements and passes the TCK. As
a developer you should be able to take your
application, and if you don’t like your current
implementation, move it to any of the other
implementations since they all are based on the
same specifications.

%QOK\@ Dismiss the Java Myths

What’s Next for Jakarta EE?

Now that all of the work is done to move Jakarta EE to Eclipse, the next release is Jakarta EE 10 and
that’s planned in the first quarter of 2022. A lot of the foundational specifications that have moved
from the javax to the jakarta namespace are now going to be improved. You can look at the various
projects at Jakarta.ee and get involved. They provide a project release review to define what they
want to improve in the future.

For example, Steve Millidge from Payara is heavily involved in Concurrency. You could go on the
Github repo to see the work being done in this area and contribute to the improvements and growth.
That’s the big difference between Jakarta EE and the previous Java specifications.

Also in the Jakarta EE 10 release timeframe, a Core Profile is likely to happen. JDK 17 is the LTS
version of Java as of September 2021. When Jakarta EE 10 releases it should run on JDK 17.

Core Profile Full Profile Web Profile

Development of the Core Profile

The Core Profile is very targeted at microservices applications. The idea is the Core Profile will
potentially also support native compilation.

This will probably be very similar to MicroProfile and have a CDI called CDI-lite, updated JAX-RS,
and JSON specifications - and possibly some others from the Jakarta EE family.

®

lelJQrO Dismiss the Java Myths

Myth: Java EE is Dead
and Outdated

Dismiss the Myth:
Jakarta EE is an Evolving
Foundational Technology
for Many Enterprise
Frameworks

Java EE has now become Jakarta EE. So, yes, Java EE is effectively frozen at Java EE 8 — it’s still
supported but there won’t be any new developments of Java EE — because it has moved to the new
namespace and name: Jakarta EE.

Jakarta EE will be a foundational technology for a lot of the enterprise frameworks out there, even
if you don’t think you use Jakarta EE application servers, it will still affect you as a developer. It’s
moving and evolving, and you still need to know about Jakarta EE. It’s definitely not dead.

Jakarta EE is alive and thriving. You can get involved, it’s moving forward, and it will be the foundation
of enterprise Java for the next 10 years.

Get Involved: 4’ JAKARTA EE

How Will You Use the Payara Platform?

Migrating to from Another Planning to Run Payara Try Payara Platform
Application Server Platform in Production in Development

Looking to migrate mission Looking for an reliable and No plans of running Payara
critical or production apps modern application server Platform in production and
from a different application for mission critical, produc- just looking to try it out, or test
server (such as GlassFish, tion environments? new features?

Jboss or WebLogic)?

https://jakarta.ee/
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/downloads/payara-platform-community-edition/
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/downloads/payara-platform-community-edition/

payara’

People who have not used Java EE in many years or who don’t know much about Java EE often say
“Java EE application servers are resource hogs, and slow to start up.” But it is possible to have a
small footprint and low resource usage with Jakarta EE runtimes.

What is an Application Server?

Application

Logéi
Configuration he @
Datasource
@ Messaging

£rayore

Before we can tackle the myth, we should define services for you, so you don’t have to write the
what an application server is and the different code to do them yourself, things like:
application server deployment models. The goal
of an application server is to provide a managed
runtime for your application.

« how to handle thread management in
the server

» how to do http processing

« how to handle the network

- database connectivity

« generate metrics and monitor-
ing diagnostics

- logging

« complete security infrastructure

In the image above, your application is shown
in the jigsaw puzzle piece at the top and center.
And the application server provides a bunch of

£ payara®

You need all these things if you are going to build
an enterprise application.

From a Jakarta EE point of view, an application
server also provides industry standard APIs
and allow your applications to use the services.
Jakarta EE supplies the Java Persistence API,
for example, which allows you to write and read
data from a database, which then uses underly-
ing datasource implementations within the appli-
cation server and the Java EE API to map the
datainto rows and use the datasource to connect
to the database.

There are other things that go beyond the single
instance of an application server that a managed
runtime or application server provide, such as
high availability, clustering capabilities, and the
ability to store data in one node and retrieve it
from another node. Many different enterprise
functionalities are provided by the managed
runtime. It is a bit like an operating system, but
for server side applications.

That sits on top of some type of compute infra-
structure. In the past few years, the compute
infrastructure has become much more diverse.
We’ve moved away from bare metal servers
to virtual machines to containers to container
orchestration in Kubernetes. Or Cloud, or con-
tainer runtimes. All of these options are consid-
ered compute infrastructure to the application
server, and it’s the role of the application server
to hide the complexities of the compute infra-
structure from the developer so the developer
can focus on writing the application, use the
Jakarta EE or MicroProfile APIs and get all the
benefits of the functionality provided for you
within the APIs.

Using this as a definition of an application server,
many other runtimes that would claim that Java
EE application servers are ‘heavy and slow’
would fit that same definition.

11

Dismiss the Java Myths

Traditional Application Server

You take your application, and you go through
a step where you deploy it to the application
server. That’s how you do this with Payara Server
on adomain, you go through the Admin Console,
upload your application, and click deploy. Similar
to WeblLogic or JBoss, or any other Jakarta EE
application servers.

Fat Jar

Another model that is evolving. In this model,
you take the application and package it tightly
with your managed runtime, and then you can
run it through java — jar. That will run the applica-
tion and bootstrap the runtime at the same time.

It is remarkably similar to a traditional applica-
tion server except that this is a different pack-
aging system. You’re combining your application
with your runtime and creating a single arti-
fact. Payara Micro uses this model of applica-
tion deployment.

In the Fat Jar model, some runtimes allow you
to pick and choose the components and self-as-
semble your runtime. In a Jakarta EE model with
Payara, your runtime will be versioned and be a
specific version of the Payara Platform. You don’t
choose your security components or datasource
implementation, or which metrics provider or
networking library. Some runtimes give you
that freedom of choice, but it requires a level of
self assembly.

Spring Boot is built on top of the Fat Jar model
and makes opinionated decisions about what
those components should be.

From a runtime perspective, some people favor
the Fat Jar because you have a single artifact,
and others prefer a Thin War where you deploy
asmall application on top of a managed runtime.

£ payara®

Thin Wars and Container Images

One advantage of the deployment process of
separating the runtime layer from your appli-
cation is when you start to look at containers
and how you build container images so they can
be executed with a container orchestrator (like
Kubernetes). There are advantages to separat-
ing out the application layer from the application
server or managed runtime or framework.

Typically, in containers there are several layers.
The base layer, which is the operating system
and how you’ve configured the operating system.

Then there is a runtime layer. For example, if
you’re using Payara Micro you can layer a spe-
cific version of Payara Micro on top of your base
system layer.

And then you layer on your application code as
a single, separate layer.

The operating system and runtime layers are
stable and can be quite large. When you sepa-
rate the application from the runtime and oper-
ating system layers, you gain the advantage of
being able to push small application changes
to a thin layer, rather than having to push the
whole artifact over and over again with every
small change. This is especially beneficial dur-
ing development or pre-production stages when
your application may go through a lot of changes.
And since container images are built in layers,
the build time is much faster if you’re just push-
ing slight changes to a thin layer than if you were
pushing the whole thing, including the operating
system and runtime, with each change.

12

Dismiss the Java Myths

Advantages of a
Managed Runtime

There is no self-assembly needed with a man-
aged runtime like Payara Server or Payara Micro.
Managed runtimes come with a versioned set
of everything that works together, is certified,
passes the Jakarta EE TCKs, and is a compati-
ble implementation of Jakarta EE. This means
you don’t have to assemble a runtime from var-
ious parts.

It’s also ‘versioned’, and from a security patching
perspective, if you have different layers and you
have a problem with something contained within
Payara Micro or Payara Server, such as a security
alert on some component, then you know you
can upgrade just that layer to the latest version
of Payara and solve that security issue.

This is a much trickier fix if you are packaging
a Fat Jar yourself from different components —
especially when they’ve gone into production.
It’s possible that the original development team
that packaged the Fat Jar has moved on by then.

Because the Payara Platform is a managed runt-
ime, there are a lot of other capabilities we can
provide already baked into the server, like moni-
toring, health checks, high availability, and scal-
ability. It allows the developer to focus on build-
ing the application and not the infrastructure.

£ payara®

Build Applications — Not Infrastructure

Dismiss the Java Myths

One of the great advantages of an application server is that it separates your application from the
runtime. This means the runtime can hide a lot of complexity. For example, if you were going to pack-
age a WAR file within a Fat Jar and deploy it to Kubernetes, then you must worry about creating the
Fat Jar, creating the Docker files, building container images, writing YAML file, creating your Pods,
and controlling that through the Kubernetes API. That’s a lot to worry about!

But when you move to something like Payara Server or Payara Cloud, there are many things that the
runtime can do to isolate you from all that complexity. For example, in Payara Server, if you run it
on a cloud provider like Azure or AWS using VM instances, it will automatically cluster without any
special configuration.

We can provide things like helm charts to allow you to build a Payara Domain in Kubernetes. Or a
Kubernetes Operator which can control your application. We can do a lot of that work for you within
an application server, so you don’t have to worry about it as a developer. You can worry about your
actual job —building applications —and leave the infrastructure up to your application server/runtime.

What is Considered Heavy?

Java EE often gets accused of being ‘heavy’. But what does that mean? There are four things that
people could mean when they refer to Java EE as ‘heavy’:

1. Memory Usage - people claimJavaEEor 3. Deployment Size - some people say

the Java EE application servers use lots
of memory. That isn’t necessarily true as
we’ll show you a bit later in this ebook.
Application working sets, or the amount
of memory your application is going to
use, is going to typically dwarf the mem-
ory used by the server itself. Your working
set is going to depend on how much data
you need to hit in a single transaction or
request, and that will typically be large
compared to the application server.

CPU Usage - there is no reason why a runt-
ime is going to add a lot of CPU over and

above your raw algorithmic performance. 4.

If you build a ‘hello world’ application

that uses all the layers of Java EE, you will
typically get that running with a request
processing time of 10-20 milliseconds. The
CPU usage is not typically large for a Java
EE application server.

13

deployment size is heavy. But because we
separate the application server from the
application, deployment sizes for Jakarta
EE are quite small. A reasonable sized
application, depending how many third-
party dependencies you package and if you
use raw Java EE APIs, for example, a ‘hello
world’ rest application is only a few kilo-
bytes in size. And that’s not heavy.

For other runtimes where you package your
runtime along with your application, the
deployment size is typically larger than a
Jakarta EE deployment.

Installation Size - people also talk about
application servers having gigabytes of
installation. If you look at Payara Micro as
an example, this is just not true anymore.
Payara Micro is about 80mb.

payara’

Steve Millidge took Pet Store, a Java EE standard application, and Pet Clinic, a Spring standard
application, and built each of them to compare them. We're not trying to compare Jakarta EE versus
Spring, because both are very small.

But if you look at Pet Clinic, the file size is between 50 and 80mb depending on what you choose to
include in your runtime. If you add things like rest and web sockets you will be closer to the 80mb
size. When you boot it up, it boots in 2 to 9 seconds. if you look at the heap usage, it shows around
30 mb. In that Spring application, if you hit a REST endpoint it will do around 2000 - 3000 requests
per second. So, it’s both fast and small.

If you take Payara Micro 5 and the Pet Store application which has REST endpoints and a JSF appli-
cation, the application itself is around 8mb and Payara Micro is around 80 mb. So, it’s a bit bigger
than Springboot but certainly not considered huge. Its heap usage is between 17 and 45 mb when
you boot it up and it boots up in 2 to 10 seconds.

If you were to run either Pet Clinic or Pet Store through a performance tool, the web sessions start
gathering and using the majority of the heap. So, it’s the application usage rather than the runtime
that adds ‘heaviness’.

Both Jakarta EE and Spring are incredibly small infrastructures which are very comparable. The
runtimes use less resources than your browser does running JavaScript.

Payara Micro Heap Usage?

i Overview 2

~ Detaily

~ Biggest Objects by Retained Size

——1013.1KB
N\ —1013.8kB
25MB

| T~—4.2MB

33MB —

Total: 44.1 MB

& steve Millidge

The above image shows a Payara Micro heap dump after starting the Pet Store application. This has
gone through the Eclipse Memory Analyzer tool kit.

®
%QQFO Dismiss the Java Myths

What Does it Mean When People Say Java EE is Slow?

“Slow” can mean many different things. When people promote the myth of Java EE being slow, they
probably are referring to response times, performance problems, boot time, build time, or deploy-
ment time.

« Response time - most of the response time in real applications is used by the developer.
Spring Boot and Payara Micro achieved 2000 - 3000 requests per second.

« Performance problems - if you have a performance problem, you must look at whether you
have an algorithmic performance problem with a single slow request, or is it a scalability
issue where the single request is fast but concurrent requests are slow? Application servers
provide horizontal scalability.

» Boot time - is it that the boot time is slow? With Payara Micro, an application will boot
between 2 and 10 seconds depending on your application, and that’s similar to other appli-
cation runtimes. The more you add, the slower it is. There are ways to boot it a bit faster,
such as with GraalVM and native compilation, but the question to ask yourself is if that really
matters enough to rewrite your application? To move from a boot time of a few seconds to a
few hundred milliseconds? The answer to that question is probably not.

« Build time - building in a Thin War is much faster than building a full container with all the
different layers from scratch. Build time in Jakarta EE is very quick.

« Deployment time - how fast will it deploy an application? And again, this may take a few
seconds up to tens of seconds depending on what you put in your application. The more you
can use with the Java APIs the faster your deployment will be.

Most Java EE application servers will offer horizontal scalability right out of the box, giving you the
ability to add multiple instances. Payara Server and Payara Micro provide automatic clustering for
horizontal scalability without you having to do any work, whether that’s scaling on multiple Pods or
Pod scaler in Kubernetes - we provide that capability to cluster on a Kubernetes structure - or whether
it’s running another Java process on a physical machine. Because we have a managed runtime, we
can provide that functionality for you.

15

payara’
Java EE is Heavy

Java EE/
Jakarta EE is NOT Heavy, the
Overhead Comes from Your
Application

Java EE is NOT heavy. It’'s comparable to others. When you look at all the runtimes or application
servers, regardless of which one you choose, a lot of the overhead comes from your application
itself — not the runtime. Whether that’s memory, CPU usage, disk space, or whatever else - often it
is the application that will be the dominant factor.

The whole point of Java EE/Jakarta EE is to separate the application from your runtime, and then in
the Payara Platform, our goal is to set it up for the developer so you can just build your application.

Payara Micro covers the Jakarta EE Web Profile APIs and Batch, Concurrency specifications and
JMS client. It can run on very small Edge servers or Raspberry Pis, so it’s a very small application
server. Then we have Payara Server, which is a traditional domain mode with an Admin where you
manage many server instances. This is ideal for bare metal servers through to Kubernetes. And
then in 2022, Payara Cloud launches! Payara Cloud will run on top of Kubernetes but also will run
on multiple Kubernetes clusters.

Payara Platform Scale

/—/\ﬁ

o o Qyara
£royara Pan

o
73
B
&
5
&
=
]

rtualisation

Vil

®

pOl,JC\rO Dismiss the Java Myths

Get Involved: 4’ JAKARTA EE

How Will You Use the Payara Platform?

Migrating to from Another Planning to Run Payara Try Payara Platform
Application Server Platform in Production in Development

Looking to migrate mission Looking for an reliable and No plans of running Payara
critical or production apps modern application server Platform in production and
from a different application for mission critical, produc- just looking to try it out, or test
server (such as GlassFish, tion environments? new features?

Jboss or WebLogic)?

Myth: Java EE is Not Cloud-Native

Another common misconception about Java EE is that it is not a cloud-native technology. Before we
can discuss whether it is cloud-native, we need to decide on a definition for cloud-native, as it’s a
term that’s used in several different contexts.

What is Cloud-Native?

We’'ll look at three definitions of cloud-native:

InfoWorld - “In general usage, “cloud-native” is an approach to building and running
applications that exploits the advantages of the cloud computing delivery model.”

The obvious question that comes from reading this definition of cloud-native is then ‘what is cloud
computing?’ From our perspective, one of the unique aspects of cloud computing is the infrastruc-
ture on demand. That means infrastructure and compute infrastructure is elastic, meaning it can
expand and contract rapidly, which is different from traditional on premise data centers where you

17

https://jakarta.ee/
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/downloads/payara-platform-community-edition/
https://www.payara.fish/downloads/payara-platform-community-edition/
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/page/payara-enterprise-downloads/
https://www.payara.fish/downloads/payara-platform-community-edition/

®
gp(OlJOFO Dismiss the Java Myths

may have to raise a request or a ticket to gain access to compute, or VM, and wait for someone to
provision that for you. With cloud, you can do that in seconds.

The other big difference between cloud computing and traditional on-premise environments is that
a lot of the infrastructure is software-defined. You have APIs where you can set and configure all
your compute network and storage infrastructure. And you can do this from continuous integration,
continuous development, or from scripts and it can all be software-defined.

One of the other big areas of cloud, which is probably not a positive, but it is a reality, is that cloud
platforms like Azure, AWS, Google Cloud, all come with a whole host of proprietary APIs. There aren’t
a lot of standards around cloud providers. Each API is different, so Amazon’s API for configuring a
load balancer will be completely different from Azure. So once you start working with a cloud pro-
vider, you begin to get tied into that provider and it is difficult to move to a different one.

When we talk about cloud-native in this context, it means exploiting the elastic software-defined
infrastructure, and then running Java EE applications on that infrastructure.

Cloud Native Computing Foundation - “Cloud native technologies empower
organizations to build and run scalable applications in modern, dynamic
environments such as public, private, and hybrid clouds. Containers, service
meshes, microservices, immutable infrastructure, and declarative APIs exemplify
this approach.”

They offer a similar definition to InfoWorld for cloud-native, but when they go on to talk about
containers, service meshes, microservices, immutable infrastructure, and declarative APIs takes
the definition a step too far. These are the aspects of the industry that the Cloud Native Computing
Foundation focuses on, creating service mesh technologies and microservices, but it’s not funda-
mental to cloud computing. You don’t have to run a service mesh to run on public cloud or build
elastic infrastructure.

RedHat - “Cloud-native applications are a collection of small, independent, and
loosely coupled services. They are designed to deliver well-recognized business value,
like the ability to rapidly incorporate user feedback for continuous improvement.

Steve Millidge disagrees with this definition for cloud native. This definition effectively links cloud
native with microservices, and he feels that goes too far. You can build applications that run on
cloud infrastructure that are not microservices. Microservice architecture can also be built on top
of on-premise datacenters, so there is no need to link the two together.

18

®
%UOFO Dismiss the Java Myths

There is a lot of confusion around the definition of cloud-native, and it seems the industry is linking
four concepts together into the terminology:

« Microservices
« 12 Factor App
» Containers

» Public Cloud

While these are good practices on cloud, they are not necessarily a requirement for a cloud
native application.
For our purposes, we define cloud-native by the things which are unique about public cloud:

« Elastic infrastructure so you can scale out and down rapidly
« Ability to get infrastructure on demand

« Ability to stand up a new machine for testing

« Proprietary APIs to manage infrastructure

When you focus on this as the definition of cloud-native, we can talk about deployment models for
how you can use cloud infrastructure to deploy Jakarta EE applications. There are a lot of options
for deploying Java EE/Jakarta EE applications on public cloud.

Application Server Models

There are two different models for deploying Jakarta EE applications: traditional application server
or Fat Jar.
Traditional Application Server

As a reminder, we've said that the traditional application server separates the application from the
infrastructure, and you deploy the application into your application server. The application server
takes care of many of the services that you need, like networking, security, database access, threading.

Fat Jar

The Fat Jar model packages your application with your application server into a single Jar file that
can be run on the command line with a java -jar.

Payara Platform supports both models. Traditional deployment would be Payara Server with a tra-
ditional domain. And Payara Micro typically uses the Fat Jar deployment model.

19

payara’

Evolution of Compute Infrastructure

Steve Milldge

Traditional Deployment Virtualized Deployment Container Deployment

§oavore

Kubernetes.io offers the above image which sums up the evolution of compute infrastructure and
what has happened for cloud, where things are clashing and meeting in the middle to give us
cloud native.

The traditional deployment model consists of your hardware and operating systems, and you can
deploy multiple applications on your operating system.

Then virtualization came around, and the deployment model started to change. On top of the operat-
ing system, we got a hypervisor that allowed us to wrap full computer images into a virtual machine.
The applications are deployed on top of the operating system, deployed on the virtual machine, on
top of hypervisor, on top of the physical server running an operating system. This is what created the
birth of cloud computing as opposed to the use of dedicated servers and hosting providers.

Virtual machines allow you to create multiple things and share the compute power of the underlying
hardware. This resulted in the birth of public cloud providers, like Amazon EC2, which were effectively
virtual machines running on Amazon’s hardware.

Then we move to containers. Docker came around and we evolved to a container deployment model.
The container runtime sits on top of the operating system, but it is not the same as a hypervisor. A
hypervisor emulates an entire computer while a container runtime uses the logical file systems and
creates a copy of the operating system rather than the whole machine. You package your application

payara’

into a container, which locks the configuration of your application and your file system layer and librar-
ies that you’re using and puts it on top of a logical instance of the operating system in the container.

Containers move us into where we’re going now with containers and container instance services and
Kubernetes. They are all running on the container level.

How do we take different application server deployment models, like traditional Payara domain or
a Payara Micro, and map that to the cloud native infrastructure which is virtualization and container
deployment? This is part of the application server’s job.

How would you deploy a typical Payara domain onto a public cloud like Amazon or Azure? Payara
has a lot of documentation around this. Cloud-native is really a function in which the application
server or platform you use to run your Jakarta EE applications supports these modern, container-
ized deployments.

For Azure virtual machines, you have Azure VMs, and for AWS you have EC2.

Payara Platform 5 has specific support for Azure VMs and Amazon’s EC2, and the Payara domain is
built specifically for using them.

Traditional Application Deployment in Cloud ¢

Stevebilidge
f_ Load Balancer

Autoscale
Domain Instance 1 Group Instance 2
Admin
Server

Jakarta EE Jakarta EE
Application Application

Azul Platform Core Azul Platform Core Azul Platform Core

Suse Linux Enterprise Server Suse Linux Enterprise Server Suse Linux Enterprise Server

& Steve Millidge ﬁ){wom@

https://www.payara.fish/solutions/cloud-and-payara-platform/

£ payora®

Dismiss the Java Myths

In the above image, we see a Load Balancer. (On Amazon, that would be an elastic load balancer

and on Azure it would be a standard load balancer.)

Most cloud providers offer scalability by building on the elasticity of the cloud infrastructure. On
Azure, it’s called a scale set, and on Amazon it’s called an auto-scaling group. This allows you to
create a virtual machine image and scale it out - so you can choose 4 or 5 or 6. These are typically
linked into the load balancer and cloud computing so it will load balance depending on how many

virtual machines you have.

Payara Platform 5 has done a lot of work to make it
cloud native for this sort of architecture. We recently
created a new feature called Auto Scale Group, which
will eventually allow you to call the public cloud APIs to
scale out virtual machines for you. But right now, out of
the box, if you use Payara and create this architecture
it will automatically cluster your application instances
and they will do that on different public cloud platforms.

It willalso enable you to create VM images with instances
on, which we call Dynamic Instances, and that allows
you to add and domain instances on the fly from the
domain. We also have a Deployment Group and if you
add an instance into the Deployment Group, then the
applications that you configured and the configuration
you set will automatically be propagated.

Out-of-the-box, Payara
domain supports traditional
application deployment.

You don’t have to have
microservices to work in

a public environment and
gain the benefits of elasticity
and auto clustering and
scalability. Payara Server

in a traditional domain

can support that now. So,
you can take a traditional
application and run it on
Payara Server and it would
be cloud-native.

22

payara’

Jakarta EE in Containers a

4
Load Balancer ﬁ

Container Container Container

Steve Milidge

Jakarta EE Microservice Jakarta EE Microservice Jakarta EE Microservice

Payara Micro Payara Micro Payara Micro

Azul Platform Core Azul Platform Core Azul Platform Core

Suse Linux Enterprise Suse Linux Enterprise Suse Linux Enterprise

Cloud- Container Service

¥ Steve Millidge ;f.)(cworcw@

We have solutions for containers running natively in public cloud. The two main container services,
Amazon Elastic Container Service, which allows you to create a container and spin it up without
worrying too much about VMs and the compute infrastructure. Amazon provides it. And a similar
feature is available on Azure; it’s called Container Instances.

Payara Platform fully supports both. So, you create your container image using Docker or something
like that, and then, in the above example, you package your Linux, Azul Platform Core (which is
included with a Payara Enterprise subscription), and then you can put your microservice on top of
it or any web profile application over it. You could also use Payara Server, and that would allow you
to run any Jakarta EE compatible application.

So, all of that is packaged up and the package is sent to the container service, and it will fire up a
container and run it for you without you worrying about server management or host management
or virtual machines.

Then, on top of all of that you put a cloud load balancer, which is a bit more complex to load balance
across multiple containers, but typically the cloud provider will allow you to use multiple containers
for the same application and load balance across them. Again, Payara Platform has specific function-
ality within the infrastructure of Payara Server or Payara Micro for clustering and session replication
across this sort of architecture.

So, you can also take advantage of container services within public cloud using the Payara Platform.

https://www.payara.fish/enterprise/

payara’

Thin Wars and Container Images e

Application
Frequent Changes Application Layer

o

Stable

£poyora

Jakarta EE has advantages when you are building this architecture. If you are building container
images, you have three layers.

Container images are built from layers, and they are controlled by configuration.

« The bottom layer is your base operating system.
« Then you have the application server or managed runtime layer.
« And then you have your application layer.

Container images are typically quite large because they package an entire operating system image
and drop it into a single file. That file can be megabytes to gigabytes in size.

The layers are there so you only have to change small pieces of the file system to make updating
the top layer easier. From a Jakarta EE perspective, the application layer changes often, but it’s
separated from the application server tier. This allows you to build containers quickly and update
small changes and push them to the cloud rapidly. Typically, the application layer changes are small.

payara’

Solution: Microservices on Kubernetes

!

Pod Pod Pod

Steve Milidge.

Jakarta EE Microservice Jakarta EE Microservice Jakarta EE Microservice

Payara Micro Payara Micro Payara Micro

Azul Platform Core Azul Platform Core Azul Platform Core

Suse Linux Enterprise Suse Linux Enterprise Suse Linux Enterprise

Cloud-Kubernetes-Service

& Steve Millidge g&wom@

The next level up from containers on cloud is Kubernetes service. So, the next logical question is
what is Kubernetes? Kubernetes is a platform which is ‘standard’ in that most cloud providers sup-
port it, and it allows you to manage containers at scale. It’s not like an app development solution, it
is an infrastructure technology that allows you to manage containers at scale. It supplies services
for load balancing containers, service discovery so you can create what’s called ‘a service’ (which
are multiple pods), and then you can scale it out.

Kubernetes manages storage and lets you attach and remove storage. It can do roll outs and roll
backs of different configurations of your containers and pods. It can also do bin packing, which
means it can work out which physical compute is the best one to run your containers on. It can do
some Secrets and security management as well.

Running a Jakarta EE application on Kubernetes in this model is very similar to running on an Azure
Container Instance. The difference is Kubernetes is a standard in that it is supported by Azure, AWS,
and Google Cloud Provider. If you build your infrastructure on Kubernetes then it is likely to be a bit
more portable between the different cloud providers. If you build it on Azure Container Instances,
then it will be set up in a completely proprietary way and difficult to move it later.

In this model, we build a container image and include our Jakarta EE application, Payara Micro, JVM,
and our operating system. Then we create the Pod definition and load that in through Kubernetes
through some cryptic YAML and then we can scale the pod up and down using Pod auto-scalers.

payara’

Payara Platform has this functionality built in! Payara Platform can cluster
Kubernetes using the service names and you can build container images using Payara
Micro or Payara Server, and scale them on a Kubernetes platform.

Solution: Application Deployment on Kubernetes

Rancher Kubernetes Cluster

3 — [Ingress |
Scale Pod
Scale
Instances J \4 Autoscale Group

Payara Domain Payara Server Payara Server
Admin Server Instance Instance

Instance Pod Instance Pod

Payara K8s
Operator

Erayor

In another traditional architecture, we can build capabilities that work similarly to a domain. You
don’t need to build microservices, you can build a traditional server domain into Kubernetes.

We have something called a Payara Kubernetes Operator. The operator builds the infrastructure.
If you drop that into Kubernetes, it will create the instances and Pods that you need to build a tradi-
tional Payara Server domain on top of Kubernetes. If you’re using a cloud Kubernetes service, you
can take a normal Payara domain and build it out onto Kubernetes.

As mentioned previously, we are building more functionality in the Payara Platform that will allow scal-
ing out and down from the Admin Server, but you can currently do that with pod scalers and dynamic
instances. You will be able to build clustered Jakarta EE application servers on top of Kubernetes.

Later, we’ll produce Helm Charts which will allow you to install all of this from scratch.

%QOK\@ Dismiss the Java Myths

Java EE is Definitely Cloud-Native
So, this brings us back to our question, is Java EE cloud-native?

From a cloud-native perspective, Java EE APIs don’t really matter. If you have a Java EE application,
what really makes it cloud-native is what you choose as a platform to take your WAR or EAR file and
deploy it. You need an application server to manage the infrastructure for you, and then you have a
Java EE cloud-native application because it’s going to run natively on cloud infrastructure and you
can scale it out, down, and use the elasticity of cloud. You can build out and deploy the application
natively into public cloud.

There are a lot of proprietary APIs within cloud. At Payara, we have built many messaging connectors
for Java EE developers. For example, we've created a set of JCA adapters, Apache Kafka, and MQTT
(a protocol that many event services on cloud platforms use).

The two main advantages of using our connectors over using the service API:

1. The service API is proprietary
2. Need to integrate things with Jakarta EE model

For example, if you use the standard API to get a message from Amazon SQS , then you would need
to set up a Java EE context and then use entity managers and session beans or CDI. Payara Platform
connectors do all of that for you so you can just integrate with the technologies.

There are also different security protocols used by the various cloud providers. Payara Platform
integrates with standard security providers like OAuth2, OpenID Connect and LDAP. Our job is to
build this sort of ecosystem that makes your applications natively run with the services provided by
the cloud providers.

Using standard Jakarta EE, such as Jakarta security, Payara builds connectors that allow your appli-
cations to use the security protocols and be in the right context for the rest of the application code.

27

https://www.payara.fish/products/ecosystem-catalog/#connectors
https://www.payara.fish/products/ecosystem-catalog/#connectors
https://www.payara.fish/products/ecosystem-catalog/
https://www.payara.fish/products/ecosystem-catalog/#security

payara’

So, what if we accepted that all of this is software-defined infrastructure? Is there a way we could
completely build a cloud-native runtime for a developer? Or as an architect that needs to deploy a
Jakarta EE application?

Traditional Deployment ¢

Steve Milidge

Application

£poyora

If we look back at the traditional deployment model, what we see with Jakarta EE is that we are
separating the application from the compute infrastructure and our runtime. You create a WAR file
or EAR file and deploy it.

Some of the work Payara has been doing recently is instead of taking the models that
we’ve just described here (packaging up Kubernetes and creating containers and Pod
definitions, and YAML) - instead of doing all of that infrastructure work - what if we
took this Jakarta EE traditional deployment model and applied it to the cloud?

This is what we’ve done with Payara Cloud.
Payara Cloud: Upload. Deploy. Run.

The idea of Payara Cloud is that you can deploy applications to the cloud in a three-step process.
We want to take the deployment process of the Jakarta EE model and deploy it to the cloud.

payara’

Ourview was all you need to dois upload your EAR or WAR file for your application, go onto an Admin
Console and click Deploy.

When you log into Payara Cloud, you have a set of namespaces (a grouping so if you have microser-
vices in a single application you could create them in a single namespace, and they’d be able to talk
to each other). You upload the application and hit deploy and it just deploys it for you and gives you
a URL to access your application - just like you would do with a standard application server.

Ultimately, all of the Payara products are designed to make running on the cloud easier for devel-
opers, from Payara Server to Payara Micro and now, Payara Cloud.

What is Underneath Payara Cloud?

[e
clou

API Gateway

VM VM VM

- > Kubernetes

£rayorar

You may be wondering how Payara Cloud reduces the steps of deploying an application to the cloud.
Behind the scenes, Payara Cloud is building all of the infrastructure and deployment models that
you can build yourself if you want (as mentioned, Payara Platform is cloud-native and will run in
cloud environments) but Payara Cloud does it for you.

When you upload the application and click deploy, Payara Cloud does all of the tedious infrastructure
configuration that needs doing to run. And we sit it all on top of Kubernetes so we can put it on Azure,
AWS, or GCP, or potentially, on-premises in the future. Basically, we can take this and run it anywhere.

payara’

Payara Cloud packages your WAR file with Payara Micro for the Java EE application server,

builds it into a container image and creates the Docker files, Pods, YAML files, works out Secrets, and
allows you to configure external configuration sources, connect to databases. Then, Payara Cloud
runs it on top of Kubernetes and sorts out the Ingress for you with an API gateway.

Payara Cloud shows that the Jakarta EE model is absolutely suited for cloud-native deployment.

In fact, we could take this model a step further.

Solution: Application on Hybrid Cloud

Jakarta EE
Application

l Payara Cloud

hﬁ

Azure Kubernetes Service Rancher Kubernetes Cluster Elastic K8S Service

App App App App App App App
Pod Pod Pod Pod Pod Pod Pod

App Provisioner App Provisioner App Provisioner

& Steve Millidge ;ﬁ(ouoro‘”)

We could take this and deploy it on a complete hybrid cloud. There’s nothing stopping us from build-
ing infrastructure that lets you take your application and drop it into one of multiple Kubernetes
clusters or spread it across Kubernetes clusters. Currently, you can choose regions, but you can’t
deploy the same application into multiple regions at this time. This is a potential future feature of
Payara Cloud.

Because your Jakarta EE application is just a WAR file, we can deploy it and drop it on Azure or Elastic
K8 (Amazon Kubernetes), or we could put it on an on-premise Kubernetes cluster like OpenShift.
That would run!

Basically, what Payara is doing as a Jakarta EE vendor is managing all of this for the developer so
you can build the application and not deal with the infrastructure.

The biggest change in cloud-native is this infrastructure layer.

®

leIJQrO Dismiss the Java Myths

Myth: Java EE is Not
Cloud-Native

Dismiss the Myth: Jakarta
EE Lets You Write Your
Application Once and Run
it Anywhere - Including a
Cloud Platform

Developers Can Write Once and Run Anywhere

Ultimately, we want to separate your application from the infrastructure, and Payara Platform pro-
vides a platform that can scale from edge servers to containers to bare metal to virtualization to
Kubernetes and put it right onto a cloud platform so you can run your application wherever you want.

Java EE is cloud-native. Jakarta EE applications run cloud-natively from traditional deployment on
VMs, where Payara has done the work to ensure clustering and elasticity works right out of the box,
right through taking an application and deploying it on Kubernetes.

31

®
%vara Dismiss the Java Myths

MYTH: Java EE Doesn’t Do Microservices

Before we can talk about whether or not Java EE can do microservices we should briefly discuss
what microservices are:

“Microservices architectural style is an approach to developing a single application
as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API. These services are built
around business capabilities and independently deployable by fully automated
deployment machinery...”

https://martinfowler.com/articles/microservices.html

Martin Fowler’s definition is one of the first microservices definitions from back in 2014. Microservices
are an evolution, to be honest, but they evolved from remote procedure calls from way back in the
1980s and 1990s through Corbo, remote EJBs, web services, service buses, and restful architec-
tures. And now we’ve arrived at microservices.

In the Martin Fowler definition, microservices is an architectural style about how to architect appli-
cations and not necessarily about the individual business code, but how you architect the system.

What people often call a monolithic application, one ‘big lump’, and split it up into a suite of small
services. There isn’t a definition for what a “small” service is, and you could spend weeks arguing
about what that means, but effectively, this suite of services typically run in their own process in the
operating system. They communicate with lightweight mechanisms, typically HTTP.

The idea is you build each service around a specific business capability so that each one manages
its own domain. And because they are separate processes they will be independently deployable,
so you can take one microservice down without affecting the suite of other microservices - which is
unlike a monolithic application.

Then, because they are independently deployable, there is a link to automated deployment which
means you could potentially roll out each service automatically if you do an update to that service.

The move to microservices has gone hand in hand with the evolution of how compute infrastructure
works. As mentioned previously, the hardware that you run your application on has changed in the
past 10 or more years. Previously we deployed on a physical server, and then a hypervisor, and then
deployed using virtual machines - but now we deploy on containers in a container orchestration
platform like Kubernetes.

Microservices can package a service into a container and deploy it automatically onto some compute
infrastructure. So, all of the trends come together to form the microservices architecture.

You don’t have to use containers with microservices, but it helps with the automation deployment
piece of this definition.

32

https://martinfowler.com/articles/microservices.html

payara’

Typical Architecture

stream

£poyora

Let’s imagine you have an ordering section of an ecommerce website where you sell stuff online,
and you need to take the various business domains associated with that, for example, billing. The
billing domain might involve credit card payments or raising invoices. What we can do in microser-
vices architecture is take that business domain and build a number of operations in the microservice
that would serve the billing domain.

Within the microservice you would potentially have a rest API, a load balancer to independently
scale your microservice out, and potentially a datastore.

You could do the same thing for inventory. So if you needed to work out how much stock you have,
you could have an inventory service that works with a database to see if you have items on hand or
if they need to be ordered.

Then you take your application and split it up into these business domains. You could also potentially
have search or warehousing to send orders to be picked and shipped.

In this illustration above, it shows microservices typically use REST, but it’s not required. REST is
used to retrieve or update data. But they can also talk through messaging streams and middleware
like IMS, or Apache Kafka streaming technology. They can also update microservices through event
streams from warehousing, for example.

If you were running your ecommerce website through a monolithic application, all of the various
business domains would be built in the same deployment module.

®
%QQFO Dismiss the Java Myths

The idea of microservices is that it’s split out and each microservice does one thing. Each one could
be developed by a separate team, and you tend to have a separate domain database. It’s not just
about your service architecture, microservices is also about your data architecture, where each data
would be associated with one or more microservices and be very specific to one business domain.

Microservices has also changed the user interface technology. Today, we build a lot of UI for web
applications using Javascript frameworks. This allows us to take a microservice and call multiple
REST APIs from a Javascript and then assemble and render a user interface that fuses data from
each of the different services (client-side rendering).

Previously, we did a lot of service side rendering. Service side rendering is much more difficult if you
had a microservices architecture because you would need to do a lot of calls on the service side
from something like JSF or some other service side rendering framework to pull data from various
services, make it into HTML and throw it to the client.

Microservices has evolved to complement the Javascript framework.

The challenge from an architectural point of view is working out what the business domains are,
what the services are, and what constitutes a microservice and which domain it should be in. You
have to figure out whether to create 10 microservices or 1000. The challenge is figuring out how to
split up your requirements into good components of software.

34

£ payara®

Advantages of Building Microservices

Dismiss the Java Myths

The advantages of building an application as a set of microservices include:

Modularity

If you’re doing something that
is a well-defined domain, like
billing, then you can concen-
trate on that domain and make
it modular and not closely cou-
pled with other domains. This
allows you to break them down
and analyze them in pieces.

Independent deployment

You can independently deploy
the microservices. For example,
you can take your search ser-
vice and deploy it completely
separate from your warehouse
service. If you package it all
into a single application, then
you’d have to redeploy the
whole application.

Separately scalable

From a deployment perspec-
tive, each microservice is sep-
arately scalable. If you had
a lot of search traffic on your
website, then you could fire up
10 or 20 of the search micro-
service, while you may only
need 1 instance for the ware-
house. If you put it all on a sin-
gle application, then you’d have
to scale the entire application.
Monoliths are actually scalable
too, but you can’t scale differ-
ent parts of the application.

Loosely coupled

Microservices are loosely cou-
pled, meaning changes to the
design, implementation, or
behavior in one won't cause
changes in another.

35

Independent development

You can break your develop-
ment team up arranged around
your microservice. Each team
can concentrate on a sin-
gle group of microservices.
There are some challenges
with this in that your architec-
ture will reflect how you split
the development team up, so
you need to be careful that
you build your architecture
around how you want to split
your microservices.

Replaceable

If you want to replace your
search service with version 2,
then you can create itand move
it in and replace your version
1. This isn’t something you get
for free, you have to architect
your interfaces to your micros-
ervice so version 2 will comply
with version 1, otherwise you
would get coupling with differ-
ent services. So, you do have
to architect that capability,
but it is possible to replace a
single service rather than the
whole application.

£ payara®

Highly testable

Each microservice should be
testable. This means each unit
can be tested individually from
the rest of the microservices.

Polyglot

If you want to, you can write
microservices as a polyglot
rather than Java. Some organ-
izations find advantages for
doing this.

Challenges of Microservices

Dismiss the Java Myths

Small teams

You can create small teams to
work on individual projects.

Microservices are an evolution of architecture and so you’ll need to keep an eye on certain aspects
of distributed computing. You have to worry about the fallacies of distributed computing. Whenever
you split something up into a suite of microservices that are independently deployable, then you are
basically building a distributed architecture. And therefore, you have to be concerned about issues
affecting distributed computing issues, including:

« Network reliability

e Latency is zero

- Bandwidth is infinite

« Network security

« Topology doesn’t change
e Having one administrator
- Transport cost is zero

« Network is homogeneous

When you move into microservices you need to be concerned about these things and the tradeoff
between course-grained services and fine-grained services. There are APIs that can help.

Disadvantages of microservices compared to monolithic applications include:

Operational complexity

Even though each service is
independently deployable and
scalable, on it’s own compute
infrastructure, this introduces
a lot of moving parts. How you
manage that and monitor it
becomes more complex.

Distributed

Distributed computing pre-
sents a number of challenges
as described above.

36

Eventual consistency

When you split a database it
can lead to issues around even-
tual consistency. For example,
if you update the warehouse
database and send a message
to the actual ordering system
to update inventory, that mes-
sage could take latency to get
there, during which time the
databases will be out of date.
Where as if it was all in a sin-
gle scheme, that would be an
unlikely issue to deal with.

payara’

Maintenance complexity

The multiple moving parts of microservices lead
to much more complexity than trying to maintain
a monolithic application.

Lifecycle decoupling

You can build terrible microservice architec-
tures where you get a lot of lifecycle coupling,
for example if microservice 1 calls microservice
2 - you’re now in a distributed situation and you
need to know what happens when microservice
2 is not available. Developers working on micro-
service 1 need to handle that complexity which
would not exist if this was in a monolith because
the second service would be deployed together
with the first one.

Complex system testing

Single microservice testing can be easier in a
microservice, however system testing across
the entire thing is more complex because of
the distribution.

Fault tracing

Similarly, if you have something bouncing events
around a network and services are calling other
services, if there is a fault you don’t get a straight
stack track like you would from a monolith. In
microservices you have to trace and track across
multiple services and machines to work out
what happened.

Eocvaro

In reality, you’re more likely to end up with a situation where you have a combination of all different
architectural models. You’re going to end up with a monolith for some part of your enterprise archi-
tecture, and a macro service with multiple microservices deployed together, and you can have micro-

services for different parts of architecture.

As a software engineer or architect, or technical architect, your job is to create the most optimal
solution that meets the needs of your organization and not to just follow some paradigm or architec-
tural pattern. So it may be that for efficiency, operational, or performance, you group microservices

%QOK\@ Dismiss the Java Myths

together and deploy them together. You might do server side rendering or create a specific monolithic
application because it’s the most efficient for your use case.

For example, if you don’t have large teams and you don’t need to independently scale services, and
you don’t have hundreds of thousands of users or spikes in traffic then some of the disadvantages
of microservices come into play and may outweigh the benefits. As the architect, it’s your job to
track the right course.

Jakarta EE APIS for Microservices

Typically, when we are talking about microservices it is very closely associated with REST APIs.
Jakarta EE has Jakarta REST, standard REST API for building RESTFUL web services and is used in
other frameworks like Dropwizard. We have data transfer, so we can support JSON-P and JSON-B.
Many REST web services for a user interface will be talking to Javascript and moving data across
the network through JSON.

Jakarta EE has CDI which is a dependency injection framework for building your business logic. From
the transaction side through integration of data, we have standard JPA (hibernate for example), and
JMS for messaging. We also have JCA, which doesn’t come up very often, but can be used to build
connections to other systems to send messages.

In Payara Platform we have standard JCA connectors for different cloud messaging so you can deploy
Kafka or Amazon AWS into your Service Bus and talk to different things that are not IMS compliant
and send messages and event streams across different technologies.

Cloud Connectors

All of these things can be integrated with Jakarta EE applications. Payara Platform
has all of the APIS that you could have to build microservices.

38

payara’

Jakarta EE in Containers

Steve Millidge

Load Balancer ﬁ

Container Container Container

Jakarta EE Microservice Jakarta EE Microservice Jakarta EE Microservice
Payara Micro Payara Micro Payara Micro
Azul Platform Core Azul Platform Core Azul Platform Core

Suse Linux Enterprise Suse Linux Enterprise Suse Linux Enterprise

Cloud Container Service

& Steve Millidge ﬁ)(ouom@

The microservices architecture works really well with containers because you can take your micro-
service and package it into a container, which packages the application configuration, and deploy it
onto a cloud container service or a container service - like Kubernetes.

Jakarta EE has evolved completely from only supporting domain-style application deployment into
runtimes like Payara Micro (a single Jar that you can package a microservice as a WAR file on top of
Payara Micro and push it on top of aJVM and wrap it in a container and throw it at a container service).

You can run multiple containers into a single machine or VM or whatever you choose to run it on as
a compute infrastructure. These can be independently scalable so you can scale out your container
service, microservice, and that would scale out your Jakarta EE microservice.

There are some advantages of Jakarta EE microservices over other sort of Fat Jar technologies in that
when you build containers you build them in multiple layers, as we discussed previously. Typically,
you would have the base operating system layer, the managed runtime layer (in our case, the Jakarta
EE runtime like Payara Micro), and you package the microservice on the application layer:

payara’

Thin Wars and Container Images

Application
Frequent Changes Application Layer

e

Stable

£ocyora

Because your application changes more often than your runtime, and changes in your applications
are quite small, this setup allows you to push out the containers across the network faster because
most of the container technologies just push the changes across when deploying new versions. You
can rapidly deploy new microservice versions by changing just the application layer.

This also scales onto Kubernetes, a platform for managing containers at scale. It typically works on
containers and a Pod (a definition of a microservice along with its container image). You can scale
out Pods independently from microservices. And you can do that with Jakarta EE with things like
Payara Micro.

An earlier myth that we already debunked, believing Jakarta EE is heavy, would lead people to believe
there is no point in creating a container for a microservice for Jakarta EE. Here is a heap dump of
Payara Micro running a microservice in Jakarta EE:

payara’

Is Jakarta EE Micro?

i Overview 2

Steve Milidge

~ Detailg

Size: 44.1 MB Classes: 17.1k Objects: 956.6k Class Loader: 144 Unreachable Objects Histogram

~ Biggest Objects by Retained Size

Total: 44.1 MB

& Steve Millidge %‘oyom‘“

Jakarta EE is very small and can be packaged into containers. It has REST API. You can do all the
things you need to do for microservices. You can build applications and connect to databases. In
addition to Jakarta EE, there is an initiative called MicroProfile.

MicroProfile is a set of APIs that track the challenges of microservices architecture and build on top
of Jakarta EE APIs to provide things to help with those challenges of deploying and running micro-
services architecture.

MicroProfile Built on Jakarta EE

= e e e = = e e e e e e e e = = e e e = == Standalone - -+

Open API Rest Client
i 0 2.0 2.0
TOIerance
3.0 1.2

Jakarta Jakarta Jakarta
CDI 2.0 JSON-P 11 JAX-RS 21

Config 2.0

Jakarta
JSON-B 1.0

1
I
I
|
|
Health 3.0 1
|
|
|
1
|

""""""" MicroProfile 4.0 e |
Bl = New I

Bl = Updated ' outside umbrella
= No change from last release (MicroProfile 3.3)

& Steve Millidge

payara’

For example, one of the challenges to micros-
ervices mentioned previously is that it’s diffi-
cult to debug and trace what’s happening in a
distributed system. Open Tracing provides APIs
where you can build traces of remote calls and
get them for debugging purposes.

To mitigate the fallacies of distributed comput-
ing, Fault Tolerance allows you to add anno-
tations to a remote call and if it finds it’s not
available, you can provide fall back to a different
service, or APIs for retrying the call and doing
things to limit the level of concurrency you’re
getting through your service.

MicroProfile has a REST Client for calling other
REST services. Open API defines REST end-
points and JSON documents. Config gives you

an externalized config so if you’re deploying
containers, they can configure themselves from
external sources, like Kubernetes Secrets or
other external config sources like your database.

These can all be built on top of the Jakarta
EE APIs.

Metrics helps gather all of the data and metrics
from different services and combine them into a
centralized system. And metrics API allows you
to build business metrics.

Health is a simple API that lets you expose
whether your service is alive or dead and ena-
bles container orchestration services to know
whether to kill and restart your service or not.

There are a bunch of extension APIs on top of Jakarta EE which are explicitly for building micros-
ervices architectures. MicroProfile is a multi-vendor initiative and includes implementations like:

MicroProfile Implementations

NG

THORNTAIL

£ooyoro
[crol

Built On
€

QUARKUS

& Steve Millidge

Apache TomEE

& kumuluzEE

p
WildFly><=

£poyora

MicroProfile are industry standard APIs that work with Payara Platform.

payara’

Java EE Doesn't
Do Microservices

Jakarta
EE and MicroProfile Easily
Deliver Microservices

To get back to the myth that Java EE cannot do microservices and that it’s only for monolithic
architecture - you can now see that Jakarta EE is small and has many APIs. Jakarta EE provides the
foundation and MicroProfile provides extensions which are specific for microservices architectures.
We can build them into small containers, deploy them and have all of the characteristics of a micro-
services architecture using Jakarta EE.

Foundation Technology

Java EE

payara’

One of the key things to understand about Java EE standard is that it is a foundational technology
for a lot of server-side Java. It’s not just around Java EE/Jakarta EE application servers, like Payara
Server and Payara Micro, but it is a foundation of other technologies, for example, Tomcat is a servlet
container.

Some of the microservices frameworks, like Dropwizard or Micronaut, or Quarkus, all use the Jakarta
EE specifications to some extent. For example, Dropwizard is heavily based on Jersey, which is an
implementation of Jakarta REST API. Micronaut uses dependency injection, which is part of Jakarta
EE. Quarkus is by RedHat and uses quite a few Jakarta EE specifications. Similarly, Spring uses a
large number of Jakarta EE specifications even though it is not a Jakarta EE application framework.
It uses things like Hibernate, which is a JPA implementation and can integrate with a lot of Jakarta
EE specs.

When we’re talking about Jakarta EE, we’re not just talking about application servers. So we’ll cover
how the individual specifications get developed, and why standards are a good thing and how they
help provide innovation to these frameworks and to things like Payara which are fullimplementations
of the Jakarta EE platform.

We’ve looked at the history of Java EE previously. It goes back 22 years to 1999 with the release of
J2EE 1.2. This was a basic server specification. Java EE has evolved over the years right up to the
latest release, which is Jakarta EE 9.1 in May 2021. Payara 6 Alpha supports and is compatible with
Jakarta EE 9.1.

There have been a number of major changes to Java throughout history. Java EE 5 in 2006 was when
Java EE adopted its modern name and its modern technique of development through annotations.
Java EE still gets criticized for things that happened before 2006. But by Java EE 5, EJB, JPA, and
modern foundations for the framework were put in place.

JavaEE History

Dec Sept Nov May Dec May Aug Sept Dec May
1999 2001 2003 2006 2009 2013 2017 2019 2020 2021

Eors

payara’

The name change from Java EE to Jakarta EE happened between 2017 and 2021. During that time,
Java EE transitioned into the Eclipse Foundation including the standards and API. Previously it had
been managed by Oracle.

There have been a number of releases since Java EE moved to the Eclipse Foundation. Between Java
EE 8 and Jakarta EE 9 was the namespace change between javax which was owned and trademarked
by Oracle to jakarta which is independently owned by the Eclipse Foundation.

Java EE 8 was down under Oracle’s stewardship and the JCP (Java Community Process) released in
2017. The first release from the Eclipse Foundation was Jakarta EE 8 in 2019 and it was exactly the
same as Java EE 8. It was just released under completely different stewardship, governance, and
license. This marked an important transition. It meant you could take a Java EE 8 application and run
it as a Jakarta EE 8 application under open source license and artifacts under the Eclipse Foundation.

This also marked a major milestone for the Payara team as we could release and make Payara Server
acompatible Jakarta EE 8 application server. Previously, under Java EE, we would have had to enter
a license agreement with Oracle and given Payara was founded in 2016 and we knew Jakarta EE
was coming, we didn’t get the licensing. The open licensing with Eclipse has helped other imple-
mentations, too, like TomEE and TomCat. Because Jakarta EE is open source it is easier to become
a compatible implementation.

Jakarta EE 8 was released under the javax namespace. Jakarta EE 9 was released in the jakarta
namespace. Jakarta EE 9 is similar to Jakarta EE 8 from an API perspective to allow developers to
simply change the namespace to get their applications to work on the new namespace. Then Jakarta
EE 9.1 came outin May 2021, which was a minor release that allows you to run TCKs against Java 11.

The biggest difference in the transition of Java EE from Oracle to the Eclipse Foundation is that the
specifications are now open.

Open Specifications

The Jakarta EE Specification Process — an open source
specification process that enables code-first development — and a
~ successor to the JCP for Java EE.

h =

Specification First

e e R
TS
EEEimsrses]
(T —
]

Led by Specification Lead

Documents and TCKs are closed source

One normative
“Reference Implementation”

Oracle certification process

e Bpouoret

payara’

Previously, Java EE was developed under the JCP. The JCP operated in an open way, but it wasn’t
open source. In the JCP, typically specifications are developed specifications first. People would
develop the specification document and APIs in a closed group. Now, in Jakarta EE, we are code
first through open source development mechanisms.

In the JCP, there was a specification lead which doesn’t exist under Jakarta EE. A specification lead
would gather a group and if you wanted to be involved you had to apply to be a member of the spec
group. Jakarta EE is completely different and is collaborative and open source.

Under JCP, all of the spec documents and TCKs are closed source and you couldn’t get access to
them. Before the transition, the Payara team did not have access to the Java EE TCKs, so we devel-
oped our own test suites. But under Jakarta EE, the spec documents and TCKs are open source and
under open licenses.

JCP also had a concept of a “Reference Implementation”, and that was GlassFish for the Java EE
platform. Jakarta EE doesn’t have a reference implementation, but it has compatible implementa-
tions. They can use any implementation that passes the TCKs and now that the spec documents
and TCKs are open source, anyone can get a hold of them and pass the TCK.

In the JCP, Oracle controlled the certification process, while in Jakarta EE anyone can certify. There
are some requirements for self-certification but they’re not closed.

The goal of the transition was to move everything into an open source licensing, testing, and take
Eclipse Foundations best practice collaborative open source models and apply them to specifica-
tion creation.

/f.

MicroProfile and Jakarta EE Specifications

MICROPROFILE

Interceptors | MVC

U)i] Authentication
Expression Language m
RESTful Web Services =
WebSocket | Standard Tag Library
JSON Processing XML Web Services
JSON Binding
Bean Validation
[connecrr]

MICROPROFILE

Steve Millidge imege %‘meg

®
%QQFO Dismiss the Java Myths

MicroProfile and Jakarta EE are both working groups within the Eclipse Foundation. There are a huge
range of specifications and APIs that are covered among the two working groups. They share many
as a foundation, the CDI, RESTful Web Services, JISON-P, JISON-B, and Annotations. On the Jakarta
EE side, there are a lot of fundamental server side Java APIs:

Servlet API which is the foundation for TomCat and transaction APIs.

Some of the APIs have been moved out of the JDK, like XML Binding, which is now under control of
Jakarta EE working group.

Fundamental APIs that have existed for 20+ years are now part of the specifications of the Jakarta
EE working group.

On the MicroProfile side, the APIs are basically developed as extensions of Jakarta EE and are spe-
cifically for microservices architecture. They are a little more experimental than Jakarta EE. Also,
MicroProfile carried Jakarta EE forward from an application server point of view during the transition
between Java EE 8 and Jakarta EE 9 where there were no API changes happening under the Jakarta
EE side there were a lot of changes happening on the MicroProfile side. This brings products like
Payara Micro and Payara Server up to speed and provided capabilities to provide microservices.

What is a Working Group?

There are two sides of the Eclipse Foundation. In Jakarta EE, there is the working group, which is
a group of companies that effectively funds the work on the specifications. It’s an industry consor-
tium which controls the brand, establishes part of a technical roadmap, defines the rules around
compatibility and what makes a compatible product. Ultimately it will approve specifications and
provides funding so the Eclipse Foundation can build the community, manage the process, outreach,
and conferences.

The work itself for advancing the code is done in the open source side of the Eclipse Foundation in
the Spec Project.

What is a Specification?

When you’re creating a specification you essentially have to come up with three things:

e Spec
- API Jar
- TCK

A specification requires an API Jar, you have to create an API like the servlet API, or if you’re creat-
ing one from scratch, like the NBC API. The API Jar defines the API developers will use when using
this specification.

47

®
%QQFO Dismiss the Java Myths

You have to create a Spec Documentation to give the contextual information about the specifica-
tion, how it should be used, and any other things not in the Java Doc. Some specifications have long
documents and some are short.

You also have to create a TCK - which is a Technology Compatibility Kit. This defines a suite of tests
that someone has to pass to say they are compatible with an API. Once they’ve passed the TCK they
can claim to be a compatible implementation of that specification.

The TCK ensures that anyone who claims to be compatible, like Payara, you can prove that they are
because you can take that TCK and run it against Payara independently of Payara, and prove that
we are compatible.

To release a specification you need these three things and a compatible implementation that has
passed the TCK. That means while the API, Spec, and TCK is being developed, someone somewhere
(IBM, Payara, independent open source project, etc) has to implement the API and pass the tests
to prove the API you created is implementable. That means you can’t go off as an API team and
create an API that no one can actually implement. It also provides feedback into the APIs to make
sure it makes sense.

There can be any number of compatible implementations, but there has to be at least one imple-
mentation freely available for download. Then the spec can be released.

A platform, like the Jakarta EE full platform containing all specs, or the web profile, contains these
three things. To release a platform spec you also need a compatible implementation that fully passes
the TCK.

How A Specification is Developed

The specification process is fully defined by the Eclipse Foundation. Basically, anyone can do the
first step, which is to raise a proposal for a potential specification with Jakarta EE. You don’t have
to go through a specific vendor. If you have an idea you can create a proposal.

The proposal goes to the Creation Review Working Group Committee. Then the proposal follows the
open source development process:

« Plan

« Plan Review

« Development

« Milestones
Progress Review

When you want to create and release the spec, then you have to go through a full release review.
That checks that you have an API, a TCK, and a spec document and you have a compatible imple-
mentation. At that point, it’s voted on to become a ratified spec.

48

®
%QQFO Dismiss the Java Myths

The voting on the ratification of the final spec. is when all of the intellectual property flows into the
Eclipse Foundation and away from anyone who has collaborated on the creation of the spec, and
from a licensing perspective, if you want to implement or use the API in a product - the IP flows are
at the Eclipse Foundation with open source licensing including both patent and copyright licenses.

The Eclipse Foundation provides a trusted foundation for specifications. If you want to go off and
implement one of these APIs, you know you have a robust legal framework for you to do so without
any risk.

Open Source TCK License and Process

Prior to moving to the Eclipse Foundation, the TCKs were behind licensee paywall and it was impos-
sible to get access to any of the TCKs for the specifications without becoming a licensee. Now, this
is completely open source. The full TCKs for all the specs for the full platform are transitioned to
Eclipse and it is an open source project.

Prior to the move, Payara had no access to the TCKs. This gives us transparency. Before, people
would complain that the code couldn’t move from one implementation to another because of the
grey areas of the specification or TCK. Now, we fix that easily. We can do a pull request on GitHub
for the next release of the TCK to fix it or add coverage.

It’s also completely vendor neutral. The burden is not on a single vendor. Now, the burden is shared
across all of the vendors and the whole community.

To claim compatibility, someone like Payara has to publish the TCK results. Under the JCP, com-
patibility was managed by Oracle. Now, compatibility is self-certification. For an organization like
Payara, to prove we are Jakarta EE 9.1 compatible implementation, we have to publish our TCK
results on a public forum.

You don’t need to join the Eclipse Foundation to get a compatible implementation. You just create
your own project, run your implementation against the TCKs, and if you pass the TCKs you are com-
patible. This opens the market for further innovation. The barrier to creating an implementation
of any of the specs is now just the challenge of creating the implementation itself, rather than the
commercial challenges and licenses that we had before.

The TCK development is a huge job and the community is welcome to contribute through GitHub
issues and PRs.

49

payara’

Java EE Standards
Don’t Matter

Java EE
Standards Offer a Choice of
Runtime, Vendor Neutrality,
and Longevity

Now that you see how the specifications process works, you can see there are several benefits to
having the standards.

1. Choice of Runtime

The unique thing about Jakarta EE and MicroProfile is that there are many implementations. There
are implementations of the entire platform as well as implementations of individual APIs. Your code
will work with any and all of the implementations because they all pass the same TCKs.

2. Vendor Neutrality

Jakarta EE has a lot of people on the Working Group. The Working Group manages the process, not
the development of the APIs. There are many organizations involved in managing the process of
creating APIs, it’s a huge industry initiative. We have complete vendor neutrality because it’s at the
Eclipse Foundation, which is an open source, not for profit organisation. If anyone wanted to drop
out of the process, none of the specifications need to stop or disappear. You are not at the whim of
a single vendor since it’s governed by the Eclipse Foundation. It allows a small organization, like
Payara, to sit alongside larger organizations like IBM or RedHat.

3. Longevity

The specifications are building backwards compatibility. The companies may come and go, but the
specifications can continue. That gives developers or someone who wants to run production systems
on this technology confidence that it will last a long time.

®
&ffal}c\rﬂ Dismiss the Java Myths

Some other advantages if you want to become an implementer of any of the APIs:

e Open source

e Open governance

- Patent protection

e Simple license

« Independent stewardship
 Industry standard

« Independent implementations

How to Get Involved with Jakarta EE
Because everything is done through the Eclipse Foundation, everyone can get involved. You can

help with marketing, technical work, collateral work, or just report bugs you discover when using
any of the APIs.

Every project has a mailing list. You can choose the project you want to get involved in and add
yourself to the mailing list.

Connect with us!

b

Mailing lists Upcoming Events GitHub EE4)
Submit here! Pull Request & issues

TS

Jakarta EE Development Blog Posts Virtual Meetups
Slack Workspace Jakarta Tech Talks

PE@E® 4

COPYRIGHT (C) 2020, ECLIPSE FOUNDATION, INC. | THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC BY 4.0) | V2020-08

If you want to commit code, you don’t need to be a committer on the project. First, you would need
to have a contributor agreement to have a PR merged. That makes sure you sign the intellectual
property rights over to the Eclipse Foundation.

You can also become an Eclipse Foundation member and if you’re an organization, you can join the
Jakarta EE Working Group.

51

&FJ(CWOFOCQ Dismiss the Java Myths

MYTH: The Java EE Deployment Model is Out
of Date

Another common myth about Java EE is that the deployment model is out of date. To show you why
this is not true, first we’ll review what’s in the Jakarta EE applications (and what isn’t!), and review
the runtime models that we’ve discussed in depth previously.

What is in a Java EE/Jakarta EE Application?

In Jakarta EE, you build your application separately from your application runtime. The application
has your application code (classes), 3rd party application dependencies, and optionally, you may
have deployment descriptions if you’re using an older application.

It's packaged into a single archive, either an EAR or WAR file.

From a developer perspective - your work is about done! You wouldn’t typically have any Jars from
jakarta EE APIs.

With this deployment model you build the archive.

What is NOT in a Jakarta EE Application?

Your application does not contain anything that isn’t directly related to your application. For exam-
ple, you wouldn’t typically have code to do connection pooling or datasources. You wouldn’t have
different messaging code, you would use JMS connectors. You wouldn’t bring in third party code from
metrics or network code or to embed a web server. You just concentrate on building your application
and not the infrastructure.

All of that other stuff is provided by your Jakarta EE runtime, like Payara. The runtime provides a
bunch of services to your application.

52

payara’

Application runtime models.

Traditional Application Server Fat Jar Runtime

Application
Thin War Application

java—jar ...

£

There are a few different types of runtime models that you can build and they apply to Jakarta EE
and into other Fat Jar type frameworks (like Springboot).

Typically, in Jakarta EE, you would package your application into a Thin War, which only has appli-
cation code and any third party dependencies your application needs. And then you can deploy it to
a runtime somewhere. The runtime provides a whole host of services for you and your application,
so you don’t have to package them with the application.

The alternative model is that you would package everything up together into a single archive. In some
frameworks you would have to assemble which ‘steak sauce’ you want for your technology, which
connection pooling, how you want to do metrics, messaging, and configuration, security. You would
pullit all together and assemble the runtime alongside your application and package it into a single
archive. Then you take the archive and deploy it into your compute infrastructure, either running it
on the command line with a java - jar, or potentially package it into a container.

You basically have everything in one archive, which is why it gets called ‘fat’ since it tends to have
a lot of code inside it.

payara’

The Jakarta EE deployment model is that you build your application separately from your runtime
and ship it separately as opposed to an old fat jar where you assemble your runtime from a menu
of parts.

There are advantages and disadvantages of the Jakarta EE deployment model. In Payara Micro, it
supports the bundling of your Payara Micro container with an application into a single Jar if that’s
how you want to package it. But it also supports running and deploying your application separately
to the runtime.

One of the biggest advantages of the Jakarta EE model is versioning.

(.

AT

Versioning in Jakarta EE Application Mcu<.

Application Layer Application
Frequent Changes
: & (Thin War)

Independently

Versioned and - ‘g;‘*‘

Patched

Independently
Versioned and
Patched

Eoayore

As a developer it might seem easy to take your application components, your runtime, and assemble
it how you want it, and then put it into a single archive and run that on your compute infrastructure.
But the problem or disadvantage of doing that comes when you need to make changes to your
application or microservice in production or understand what you have.

For example, if there was a critical CVE on a component that is running in your Fat Jar, who knows
what’s in that Fat Jar? Who knows whether that CVE has been fixed or whether the service with a
single Jar file has that component within it?

®
&ffal}c\rﬂ Dismiss the Java Myths

If you break down the model into three layers, then you have different versioning more easily. For
example, you have a base operating system layer that you either package in your container or run on
a VM or bare metal server. That will be independently versioned and patched from your application.
The developer often doesn’t have control over what version of the operating system is running in
the data center or cloud. And you would hope someone else is patching and maintaining that layer
of the operating system.

Similarly, when you have a managed runtime like Payara Micro or Payara Server, or any other Jakarta
EE server like WebLogic or WebSphere, then you can have an independently versioned and patched
runtime as well. That includes all the security code, the HTTP handling, and all the layers shown
previously that is delivered for you by your Jakarta EE runtime. For example, at Payara, we maintain
the runtime and issue new releases monthly and monitor for security issues and provide patches or
alerts or fix problems in the next release of the Payara Platform runtime.

If someone does come to you in operations and says they’ve seen a critical CVE in the XYZ library,
do we have that? Then you can talk to your runtime vendor to make sure that’s fixed and you don’t
have to troll through running services and open Jar files to decide whether or not you have that.

Similarly, the developers of runtimes, like the Payara Team, support and track issues that need
updates as well. You can have confidence based on backwards compatibility and things that you
would be able to move to the next release of the runtime without huge concerns.

The developer or architect then only needs to manage the application layer itself, along with any
third party dependencies the application requires. If you’ve got Jakarta EE, you would typically just
have one Jakarta EE API dependencies, which makes it easier to manage the single API than pulling
in half the internet to assemble a runtime.

Your application layer may change rapidly and more often than the Payara Platform or the Operating
System base layer. So the layers help you when you need to make changes.

The other advantage you get from splitting the application layer away from the runtime and base
layer is that if you do decide to run in a VM or bare metal environment, then you need to package
and build a container image like Docker. These technologies are typically built in layers. So when
you make a change and deploy it on the cloud for example, the technology is clever enough to only
push the changes. If you can maintain a stable operating system layer and runtime layer and just
frequently change the Thin War application which is only a few kilobytes in size, then the updates
can be faster and less data is flying around. The development cycle can be much faster.

55

payara’

Frequent Changes Application Layer

Stable

Eooyora

Another advantage is looking at how you run your application. If you separate the application from
the application runtime, then your application runtime can take your application and run it on lots
of services for you. Payara Platform allows you to write the code once, and run anywhere:

Payara Platform Scale

/—/\ﬁ

%qom" A Foi3e

@
] - o
w [} 2
= 5]
c = =
] = 5
e 2
5 S
9 @ x

Epoyora’

You don’t have to assemble anything specific to run on Azure or Kubernetes. Payara Platform can
take your WAR file written to Jakarta EE standards and deploy it on Payara Micro, and Edge device,
run in a container, etc.

We’re about to launch Payara Cloud, which is essentially a PaaS for Jakarta EE applications. You just
take your WAR cloud and push it to the cloud and the application runs. It just takes the Thin War and
uses the concept that you have a separately packaged application from the infrastructure.

payara’

The Java EE
Deployment Model is Out
of Date

Jakarta
EE Deployment Model
is Not Outdated - It Has
Many Advantages!

There are so many advantages of the deployment model, achieved by separating the runtime and
deployment as we’ve mentioned. Here’s a quick summary of the advantages:

« No self assembly

« All pieces work together

- Versioned runtime

« Security

« Monitoring

- Health

« High Availability

« Scalability

» Focus on application (not infrastructure)

The myth that Jakarta EE deployment model is outdated is just that, a myth.

sales@payara.fish +44 207 754 0481 www.payara.fish

Payara Services Ltd 2022 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

mailto:sales%40payara.fish?subject=
https://www.payara.fish

	MYTH: Java EE is Outdated and Dead
	The Platform

	The Java EE Foundation Technology
	Key Specifications
	What is a Jakarta EE Specification?
	Benefits of Specifications

	Java EE Transitioned to the Eclipse Foundation
	Why Did Java EE Move to the Eclipse Foundation?
	What’s Next for Jakarta EE?
	Core Profile
	Full Profile
	Web Profile
	Development of the Core Profile
	Myth: Java EE is Dead and Outdated
	Dismiss the Myth: Jakarta EE is an Evolving Foundational Technology for Many Enterprise Frameworks

	MYTH: Java EE Application Servers Are Heavy
	What is an Application Server?
	Traditional Application Server
	Fat Jar
	Thin Wars and Container Images

	Advantages of a Managed Runtime
	Build Applications – Not Infrastructure

	What is Considered Heavy?
	How Does Jakarta EE Compare?
	What Does it Mean When People Say Java EE is Slow?
	Myth: Java EE is Heavy
	Dismiss the Myth: Java EE/Jakarta EE is NOT Heavy, the Overhead Comes from Your Application

	Myth: Java EE is Not Cloud-Native
	What is Cloud-Native?

	Application Server Models
	Traditional Application Server
	Fat Jar

	Evolution of Compute Infrastructure
	Traditional Application Deployment in Cloud
	Virtual Machines
	Containers
	Jakarta EE Application Deployment Model
	Microservices on Kubernetes
	Application Deployment on Kubernetes

	Java EE is Definitely Cloud-Native
	Cloud Native Runtime - Applying the Jakarta EE Model to the Cloud
	How Payara Cloud Works
	Developers Can Write Once and Run Anywhere

	Myth: Java EE is Not Cloud-Native
	Dismiss the Myth: Jakarta EE Lets You Write Your Application Once and Run it Anywhere – Including a Cloud Platform

	MYTH: Java EE Doesn’t Do Microservices
	Typical Microservices Architecture
	Advantages of Building Microservices
	Challenges of Microservices
	Pragmatic (Realistic) Architecture
	Jakarta EE APIS for Microservices
	Deployment of Microservices in Jakarta EE
	Microservices on Kubernetes Deployment Model

	MYTH: Java EE Standards Don’t Matter
	Open Specifications
	Java EE History
	MicroProfile and Jakarta EE Standards
	What is a Working Group?
	What is a Specification?
	How A Specification is Developed
	Open Source TCK License and Process
	Advantages of Standards and the Open Source Process

	Myth: Java EE Standards Don’t Matter
	Dismiss the Myth: Java EE Standards Offer a Choice of Runtime, Vendor Neutrality, and Longevity

	MYTH: The Java EE Deployment Model is Out of Date
	What is in a Java EE/Jakarta EE Application?
	What is NOT in a Jakarta EE Application?

	Jakarta EE Runtime Models
	Traditional Application Server
	Fat Jar Runtime

	Advantages and Disadvantages of the Jakarta EE Deployment Model
	Versioning in the Jakarta EE Application Model

	Myth: The Java EE Deployment Model is Out of Date
	Dismiss the Myth: Jakarta EE Deployment Model is Not Outdated - It Has Many Advantages!

