
Demystifying Microservices
for Jakarta EE Developers

David Heffelfinger

User G
uide

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible.

Demystifying Microservices for Jakarta EE Developers

Contents

What are Microservices?	 1

What is Jakarta EE?	 1

Can Jakarta EE do Microservices?	 2

MicroProfile 2

Microservices Advantages 3

Microservices Disadvantages 4

Migrating to Microservices 5

Iterative Refactoring 5

Partial Refactoring 5

Implementing New Application Requirements as Microservices 6

Microservices Examples using Payara Micro 6

Developing Microservices Client Code 6

The Controller Service 12

The Persistence Service 16

Free Functionality Provided by MicroProfile 20

Free Documentation by MicroProfile Open API 20

Customizing API Documentation 22

Powerful Request Tracing by MicroProfile OpenTracing 23

Free Health Check via the MicroProfile Health API 28

Customizing Health Checks 28

Use Existing Java EE Knowledge to Develop Microservices and Deploy to Payara Micro 	 31

About Payara Micro 32

About the Author	 32

Demystifying Microservices for Jakarta EE Developers

1

Microservices are a modern way to develop and design enterprise application where each “piece” is
independently deployable to allow development teams to build new components without breaking
the entire app. In this article we aim to cut through the hype, explaining microservices in terms that
make sense to Java EE and Jakarta EE developers, while covering when a microservices architecture
makes sense, as well as when it doesn’t.

What are Microservices?

Microservices is an architectural style in which code is deployed in small, granular modules. The
microservices architectural style reduces coupling and increases cohesion. Typically, microservices
are implemented as RESTful web services, commonly using JSON to pass data to one another, by
invoking HTTP methods (GET, POST, PUT or DELETE) on each other. Since communication between
microservices is done via standard HTTP methods, microservices written in different programming
languages can interact with each other.

What is Jakarta EE?

Java EE is a set of standard APIs for server-side Java development, including traditional enterprise
applications and microservices.

In 2017, Oracle announced that it would be donating Java EE to the Eclipse Foundation, with one of
the conditions of the transition being that the technology would have to be renamed. The community
chose Jakarta EE as the new name for Java EE, under the reigns of the Eclipse Foundation.

Java EE / Jakarta EE’s main advantage is that, being a standard, there are multiple implementations,
therefore code written against one implementation can be easily ported to another implementation
with few or no changes.

Moving Java EE to a vendor independent foundation such as Eclipse, has the advantage that no
one company or organization has too much influence over the standard. Additionally, previously
organizations interested in certifying their products as “Java EE Certified” would have to pay a large
amount of money to get access to a certification tool called the Technology Compatibility Kit (TCK),
as part of the donation to the Eclipse Foundation, the TCK was open sourced and made freely avail-
able, which should open the door for additional Jakarta EE compatible products. Because of these
and other advantages, the move of Java EE to the Eclipse Foundation was very well received by the
Java community.

Demystifying Microservices for Jakarta EE Developers

2

Can Jakarta EE do Microservices?

Some may think that Jakarta EE is “too heavyweight” for microservices development, but this is
simply not the case. Because of this misconception of Jakarta EE being heavyweight, some may think
that Jakarta EE may not be suitable for a microservices architecture, when in reality Jakarta EE fits
microservices development well. Some time ago, Java EE applications were typically deployed to
a “heavyweight” application server, creating the perception that a big, heavy application server is
needed when working with Java EE applications. Nowadays, most Jakarta EE vendors offer lightweight
runtimes which use very little memory or disk space, as is the case with Payara Micro.

Developing microservices with Jakarta EE involves writing standard Jakarta EE applications, while
limiting yourself to a certain subset of Jakarta EE APIs, typically JAX-RS and JSON-B, CDI and, if
interacting with a relational database, JPA. Jakarta EE developers can absolutely leverage their
existing expertise, the main requirement in this case is the development of RESTful web services
using JAX-RS, then these web services would be packaged in a WAR file and deployed to a light-
weight runtime as usual.

When using modern, embeddable Jakarta EE runtimes such as Payara Micro, frequently only one
application is deployed to each instance of the runtime. With these modern Jakarta EE runtimes,
several instances of the runtimes are often deployed to a server, frequently through containeriza-
tion and orchestration tools (such as Docker and Kubernetes), making Jakarta EE very suitable for
microservices development. Jakarta EE developers can certainly leverage their existing expertise
to develop microservices compliant applications.

Can Jakarta EE be used to develop microservices then? The answer is a resounding “yes!”. Current
crop of Jakarta EE runtimes are light weight and suitable for microservices development. Jakarta EE
developers can leverage their expertise and deploy their code to one of these lightweight runtimes,
such as Payara Micro.

MicroProfile

MicroProfile is a set of APIs that provide functionality commonly needed when developing micro-
services, it is meant to be used in conjunction with Jakarta EE, providing functionality that augments
Jakarta EE’s microservice capabilities. MicroProfile is a community collaboration between several
companies and Java User Groups and, just like Jakarta EE, it is stewarded by the Eclipse Foundation.

The following table summarizes some of the APIs provided by MicroProfile:

https://www.payara.fish/software/payara-server/payara-micro/

Demystifying Microservices for Jakarta EE Developers

3

MicroProfile API Description

OpenTracing Allows us to trace microservice invocations across server log files
and allows log aggregation tools to analyze data of a request over
different endpoints

Open API Generates documentation for microservices and allows generation of
client code capable of calling the generated OpenAPI endpoint.

REST Client Provides functionality to easily develop clients for RESTful web services.

Config Provides an easy way to configure applications via different sources such
as config files, environment variables, etc.

Fault Tolerance Provides functionality to built resilient microservices

Metrics Provides a way for servers to export Monitoring data

JWT Provides security by allowing integration with JSON Web Tokens (JWT)

Health Provides a way for automated tools to check the status of our applica-
tions and runtimes

Now that we’ve established that Jakarta EE is very much suitable for a microservices architecture,
let’s explore some of the advantages and disadvantages of the microservices approach.

Microservices Advantages
Developing an application as a series of microservices offers several advantages over traditionally
designed applications.

•	 Smaller codebases, since each microservice is a small, standalone unit, code
bases for microservices tend to be smaller and easier to manage than traditionally
designed applications.

•	 Microservices encourage good coding practices, a microservices architecture encourages
loose coupling and high cohesion.

•	 Greater resilience, traditionally designed applications act as a single point of failure, if any
component of the application is down or unavailable, the whole application is unavailable.
Since microservices are independent modules, one component (i.e. one microservice) being
down does not necessarily make the whole application unavailable.

•	 Scalability, since applications developed as a series of microservices are composed of
a number of different modules, scalability becomes easier, we can focus only on those

Demystifying Microservices for Jakarta EE Developers

4

ser- vices that may be need scaling, without having to waste effort on parts of the applica-
tion that do not need to be scaled.

•	 Polyglot Applications, Microservices are typically developed as RESTful web services, and
share data in standard JSON format, for this reason we are not locked to any particular
language when developing individual microservices, our application could potentially be
composed of microservices written in different programming languages. Microservices can
be written in the language best suited for the task it must perform.

Microservices Disadvantages
Developing and deploying applications adhering to a microservices architecture comes with its own
set of challenges, regardless of what programming language or application framework is used to
develop the application.

•	 Additional operational and tooling overhead, each microservice implementation would
require its own (possibly automated) deployment, monitoring systems, etc.

•	 Debugging microservices may be more involved than debugging traditional enterprise
applications, if an end-user reports a problem with their application, and internally that
application utilizes multiple microservices, it is not always clear which of the microservices
may be the culprit. This may be especially difficult if the microservices involved are devel-
oped by different teams with different priorities.

•	 Distributed transactions may be a challenge, rolling back a transaction involving several
microservices may be hard. A common approach to work around this is to isolate micro-
services as much as possible, treat them as single units, then have local transaction man-
agement for each microservice. For example, if microservice A invokes microservice B, there
is a problem with microservice B, a local transaction in microservice B would roll back, then
it would return an HTTP status code 500 (server error) to microservice A, microservice A
could then use this HTTP status code as a signal to initiate a compensating transaction to
bring the system back to its initial state.

•	 Network latency, since microservices rely on HTTP method calls for communications, due
to network latency sometimes performance can suffer.

•	 Potential for complex interdependencies, while independent microservices tend to be
simple, they are dependent on each other. A microservices architecture can potentially cre-
ate a complex dependency graph. This situation can be worrisome if some of our services
depend on microservices developed by other teams that may have conflicting priorities
(i.e. we find a bug in their microservice, however fixing the bug may not be a priority for the
other team).

•	 Susceptible to the fallacies of distributed computing, applications developed follow- ing a
microservices architecture may make some incorrect assumptions such as network reliabil-
ity, zero latency, infinite bandwidth, etc.

When developing a brand-new application from scratch, we should carefully evaluate our applica-
tion requirements and weight them against the various advantages or disadvantages of a micros-
ervices architecture, then decide if implementing the new application by following a microservices

Demystifying Microservices for Jakarta EE Developers

5

archi- tecture would make sense. Migrating existing applications to microservices requires some
consid- eration as well.

Migrating to Microservices

If we have an existing, traditionally designed application, migrating to microservices may or may
not make sense. In this case, not only do we need to consider the benefits vs disadvantages of a
microservices architecture, but we need to consider the fact that a microservices migration may not
provide much value to our end users. As much as we software developers like to modernize existing
applications, the fact of the matter is that redesigning existing applications does not bring direct
value to end users. If there are pressing new business requirements or defects to fix, then our users
may be better served by keeping the existing architecture.

If we decide that migrating to a microservices architecture makes sense, existing legacy systems
typically cannot be changed overnight. There are a few approaches we can follow to migrate existing
applications to a microservices architecture.

Iterative Refactoring
One approach we can use to refactor an existing application to a microservices architecture is to
identify an existing component from an existing traditional architecture and refactor it as a micro-
service, then refactor code utilizing this module to invoke your new microservice, then pick a new
component and refactor it as a microservice, so on and so forth, until the whole application has been
migrated to a microservices architecture. This approach allows us to iteratively refactor existing
traditional applications into microservices, while mitigating the risk of not implementing new func-
tionality while the application is being redesigned. By following this approach, we would eventually
end up with our application completely refactored to a microservices architecture.

Partial Refactoring
In some cases, it may not be necessary or practical to migrate an existing application completely into
a microservices architecture. If portions of the existing application provide functionality that may
useful to other applications, this functionality may be refactored as microservices. Once we do this,
our new microservice can be used by other applications, regarding of what programming language
was used to implement them. By partially refactoring our application we would end up with a hybrid
approach, using microservices only where it makes sense.

Demystifying Microservices for Jakarta EE Developers

6

Implementing New Application Requirements as Microservices
Additionally, existing applications deployed to production rarely remain unchanged, new require-
ments and enhancement requests come from the users all the time. Instead of completely migrating
an existing application to microservices, new requirements may be developed as microservices, and
our traditionally designed application can invoke the newly developed modules implementing these
new requirements. Just like with partial refactoring, by implementing new requirements as micro-
services we would end up with a hybrid approach, with existing application functionality developed
in a more traditional way, and new application functionality developed as microservices.

Microservices Examples using Payara Micro

Now that we have given a brief introduction to microservices, we are ready to show an example
microservices application written using Jakarta EE. Our example application should be very famil-
iar to most Jakarta EE developers, it is a simple CRUD (Create, Read, Update, Delete) application
developed as a series of microservices, the application will follow the familiar MVC design pattern,
with the “View” and “Controller” developed as microservices. The application will also utilize the
very common DAO pattern, with our DAO developed as a microservice as well.

Actually, the example code is not a full CRUD application, for simplicity, we decided to
only implement the “Create” part our CRUD application.

We will be using Payara Micro to deploy our example code. Payara Micro supports Java and Jakarta
EE 8 web profile applications with some extensions for full profile features.

Our application will be developed as three modules, first a microservices client, followed by a micro-
services implementation of a controller in the MVC design pattern, then an implementation of the
DAO design pattern implemented as a microservice.

Developing Microservices Client Code
Before delving into developing our services, we will first develop a microservices client in the form
of an HTML5 page using the popular Twitter Bootstrap CSS library, as well as the jQuery JavaScript
library. The JavaScript code in the front-end service will invoke the controller microservice, passing
a JSON representation of user entered data. The controller service will then invoke the persistence
service and save data to a database. Each microservice will return an HTTP code indicating success
or error condition.

Demystifying Microservices for Jakarta EE Developers

7

The most relevant parts of our client code are the HTML form and the jQuery code to submit the
form to our Controller microservice.

We will only show small snippets of code here, the complete code for the sample
application can be found at https://github.com/payara/Payara-Examples/tree/
master/payara-micro/demystifying-microservices-example.

Markup for the form in our HTML5 page looks as follows:

<form id="customerForm">

 <div class="form-group">

 <label for="salutation">Salutation</label>

 <select id="salutation" name="salutation"

 class="form-control" style="width: 100px !important;">

 <option value=""> </option>

 <option value="Mr">Mr</option>

 <option value="Mrs">Mrs</option>

 <option value="Miss">Miss</option>

 <option value="Ms">Ms</option>

 <option value="Dr">Dr</option>

 </select>

 </div>

 <div class="form-group">

 <label for="firstName">First Name</label>

 <input type="text" maxlength="10" class="form-control"

 id="firstName" name="firstName" placeholder="First Name">

 </div>

 <div class="form-group">

 <label for="middleName">Middle Name</label>

 <input type="text" maxlength="10" class="form-control"

 id="middleName" name="middleName" placeholder="Middle Name">

 </div>

 <div class="form-group">

 <label for="lastName">Last Name</label>

 <input type="text" maxlength="20" class="form-control"

 id="lastName" name="lastName" placeholder="Last Name">

 </div>

https://github.com/payara/Payara-Examples/tree/master/payara-micro/demystifying-microservices-example
https://github.com/payara/Payara-Examples/tree/master/payara-micro/demystifying-microservices-example

Demystifying Microservices for Jakarta EE Developers

8

 <div class="form-group">

 <button type="button" id="submitBtn"

 class="btn btn-primary">Submit</button>

 </div>

</form>

As we can see, this is a standard HTML form using Twitter Bootstrap CSS classes. Our page also has
a script to send form data to the controller microservice.

 <script>

 $(document).ready(function () {

 // click on button submit

 $("#submitBtn").on('click', function () {

 var customerData = $("#customerForm").serializeArray();

 var customerDataJsonObj = objectifyForm(customerData);

 $.ajax({

 headers: {

 'Content-Type': 'application/json'

 },

 crossDomain: true,

 dataType: "json",

 type: "POST",

 url: �"http://localhost:8180/CrudController/

webresources/customercontroller/",

 data: JSON.stringify(customerDataJsonObj)

 }).done(function (data, textStatus, jqXHR) {

 if (jqXHR.status === 200) {

 $("#msg").removeClass();

 $("#msg").toggleClass("alert alert-success");

 $("#msg").html("Customer saved successfully.");

 } else {

 $("#msg").removeClass();

 $("#msg").toggleClass("alert alert-danger");

 $("#msg").html("There was an error saving customer

data.");

 }

 }).fail(function (data, textStatus, jqXHR) {

 console.log("ajax call failed");

Demystifying Microservices for Jakarta EE Developers

9

 });

 });

 });

 function objectifyForm(formArray) {//serialize data function

 var returnJsonObj = {};

 for (var i = 0; i < formArray.length; i++){

 returnJsonObj[formArray[i]['name']] = formArray[i]['value'];

 }

 return returnJsonObj;

 }

 </script>

The script is invoked when the Submit button on the page is clicked. It uses jQuery’s serialize-
Array() function to collect user-entered form data and create a JSON formatted array with it. The
serializeArray() function creates an array of JSON objects, each element on the array has a
name property matching the name attribute on the HTML markup, and a value property matching
the user-entered value.

For example, if a user selected “Mr” in the salutation drop down, entered “John” in the first name
field, left the middle name blank, and entered “Doe” as the last name, the generated JSON array
would look as follows:

[{"name":"salutation","value":"Mr"},{"name":"firstName","value":"John"},

{"name":"middleName","value":""},{"name":"lastName","value":"Doe"}]

Notice that the value of each “name” property in the JSON array above matches the “name” attrib-
utes in the HTML form, the corresponding “value” attributes match the user entered values. For
convenience, we wrote a JavaScript function to convert the array to a single JSON object, we pass
the string representation of the resulting JSON object as the value of the of the data attribute of the
Ajax settings object.

Since the generated HTTP request will be sent to a different instance of Payara Micro, we need to
set the crossDomain property of the Ajax settings object to true, even though we are deploying all
of our microservices to the same server (or, in our case, to our local workstation).

Notice that the URL property value of the Ajax setting object has a port of 8180, we need to make
sure our Controller microservice is listening to this port when we deploy it.

We can deploy our View microservice from the command line as follows:

java -jar payara-micro.jar --port 8080 --noCluster –deploy /path/to/CrudView.

war

Demystifying Microservices for Jakarta EE Developers

10

Payara Micro is distributed as an executable jar file, therefore we can start it via the java -jar

command, exact name of the jar file will depend on the version of Payara Micro you are using.

By default, Payara Micro instances running on the same server form a cluster automatically, for
our simple example we don’t need this functionality, therefore we used the --noCluster command
line argument.

The --deploy command line argument is used to specify the artifact we want to deploy, in our case
it is a war file containing the HTML5 page serving as the user interface of our example application.

We can examine Payara Micro output to make sure our application was deployed successfully.

[2019-03-05T17:34:07.079-0500] [] [INFO] [AS-WEB-GLUE-00172] [javax.enterprise.

web] [tid: _ThreadID=1 _ThreadName=main] [timeMillis: 1551825247079]

[levelValue: 800] Loading application [CrudView] at [/CrudView]

[2019-03-05T17:34:07.151-0500] [] [INFO] [] [PayaraMicro] [tid: _ThreadID=1 _

ThreadName=main] [timeMillis: 1551825247151] [levelValue: 800] [[

{

 "Instance Configuration": {

 "Host": "pop-os.localdomain",

 "Http Port(s)": "8080",

 "Https Port(s)": "",

 "Instance Name": "payara-micro",

 "Instance Group": "no-cluster",

 "Deployed": [

 {

 "Name": "CrudView",

 "Type": "war",

 "Context Root": "/CrudView"

 }

]

 }

}]]

[2019-03-05T17:34:07.155-0500] [] [INFO] [] [PayaraMicro] [tid: _ThreadID=1 _

ThreadName=main] [timeMillis: 1551825247155] [levelValue: 800] [[

Payara Micro URLs:

http://pop-os.localdomain:8080/CrudView

Demystifying Microservices for Jakarta EE Developers

11

]]

[2019-03-05T17:34:07.156-0500] [] [INFO] [] [PayaraMicro] [tid: _ThreadID=1

_ThreadName=main] [timeMillis: 1551825247156] [levelValue: 800] Payara Micro

5.191 #badassmicrofish (build 94) ready in 7,882 (ms)

As we can see, Payara Micro’s output provides lots of useful configuration information, including the
URL of the application we just deployed, ready for copying and pasting.

We can now point our browser to our CrudView application URL (http://localhost:8080/CrudView
in our example). After entering some data, the page will look as shown in the following screenshot.

When the user clicks on the Submit button, the client passes a JSON representation of user-entered
data to the controller service.

http://localhost:8080/CrudView

Demystifying Microservices for Jakarta EE Developers

12

The Controller Service
The controller service is a standard RESTful web service implementation of a controller in the MVC
design pattern.

package fish.payara.crudcontroller.service;

//imports omitted for brevity

@Path("/customercontroller")

public class CustomerControllerService {

 @Inject

 @RestClient

 private CustomerPersistenceClient customerPersistenceClient;

 @OPTIONS

 public Response options() {

 return Response.ok("")

 .header("Access-Control-Allow-Origin",

 "http://localhost:8080")

 .header("Access-Control-Allow-Headers", "origin,” +

 “content-type, accept, authorization")

 .header("Access-Control-Allow-Credentials", "true")

 .header("Access-Control-Allow-Methods",

 "GET, POST, PUT, DELETE, OPTIONS, HEAD")

 .header("Access-Control-Max-Age", "1209600")

 .build();

 }

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 public Response addCustomer(Customer customer) throws

 URISyntaxException {

 Response response = null;

 Response persistenceServiceResponse;

 try {

 persistenceServiceResponse =

 customerPersistenceClient.create(customer);

 if (persistenceServiceResponse.getStatus() == 201) {

 response = Response.ok("{}").

Demystifying Microservices for Jakarta EE Developers

13

 header("Access-Control-Allow-Origin",

 "http://localhost:8080").build();

 } else {

 response = Response.serverError().

 header("Access-Control-Allow-Origin",

 "http://localhost:8080").build();

 }

 } catch (Exception e) {

 LOG.log(Level.SEVERE,

 "Exception while processing request", e);

 response = Response.serverError().

 header("Access-Control-Allow-Origin",

 "http://localhost:8080").build();

 }

 return response;

 }

The options() method, annotated with the javax.ws.rs.OPTIONS annotation, is necessary
since the browser automatically calls it before invoking the actual post request containing the main
logic of our server. In this method we set some header values to allow CORS (Cross-Origin Resource
Sharing), which in simple terms means we allow our service to be invoked from a different server
than the one where our service is running. In our case, the client is deployed to a different instance
of Payara Micro, therefore it is considered a different origin, these headers are necessary to allow our
client code and controller service to communicate with each other. Notice that we explicitly allow
requests from http://localhost:8080, which is the host and port where our client code is deployed.

The main logic of our controller service is in the addCustomer() method. This method accepts an
instance of a Customer class as a parameter, since the properties of our Customer object match
the names and values of the JSON string sent by the client, the Customer object is automatically
populated from the JSON string, with no additional effort on our part.

The Customer class is a simple Data Transfer Object (DTO), containing a few
properties matching the input fields in the form in the client, plus corresponding
getters and setters. The class is so simple we decided not to show it.

Our CustomerController service takes advantage of the MicroProfile REST client API, at the class
level, we inject an instance of CustomerPersistenceClient, a custom class serving as a client
to our Persistence service.

http://localhost:8080

Demystifying Microservices for Jakarta EE Developers

14

Our addCustomer() method then invokes the persistence service by invoking the create() method
on CustomerPersistenceClient, checks the HTTP status code returned by the persistence
service, then returns a corresponding status code to the client.

Let’s now take a look at the implementation of our JAX-RS client code.

package fish.payara.crudcontroller.restclient;

//Imports omitted

@Path("/webresources/customerpersistence")

@RegisterRestClient

public interface CustomerPersistenceClient {

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 public Response create(Customer customer);

}

As we can see, our client code is an interface, we didn’t have to write the actual client code implemen-
tation, the actual code is generated by the MicroProfile REST client API dynamically at deploy time! In
order for this to work properly, the interface needs to be annotated with the @RegisterRestClient
annotation, and the value of its @Path annotation needs to match the relative path of the web ser-
vice we are invoking. Additionally, method in our interface need to match the signature of the Web
Service endpoint they are invoking.

The base URL of the web service is specified in a configuration file, the logic to read it is provided by
the MicroProfile Config API. The file needs to be named microprofile-config.properties and
needs to be placed in the META-INF directory of the war file containing our code.

fish.payara.crudcontroller.restclient.CustomerPersistenceClient/mp-rest/

url=http://localhost:8280/CrudPersistence

By convention, the property name for our REST client interface is the fully qualified name of the
client interface, followed by “/mp-rest/url=”, then the actual value for the base URL of the web
service we are calling.

We can deploy our controller service to Payara Micro by issuing a command similar to the following:

java -jar payara-micro.jar --port 8180 --noCluster –deploy /path/to/

CrudController.war

Demystifying Microservices for Jakarta EE Developers

15

By examining Payara Micro’s output we can see that our code deployed successfully.

[2019-03-05T17:33:43.485-0500] [] [INFO] [AS-WEB-GLUE-00172] [javax.enterprise.

web] [tid: _ThreadID=1 _ThreadName=main] [timeMillis: 1551825223485]

[levelValue: 800] Loading application [CrudController] at [/CrudController]

[2019-03-05T17:33:43.549-0500] [] [INFO] [] [PayaraMicro] [tid: _ThreadID=1 _

ThreadName=main] [timeMillis: 1551825223549] [levelValue: 800] [[

{

 "Instance Configuration": {

 "Host": "pop-os.localdomain",

 "Http Port(s)": "8180",

 "Https Port(s)": "",

 "Instance Name": "payara-micro",

 "Instance Group": "no-cluster",

 "Deployed": [

 {

 "Name": "CrudController",

 "Type": "war",

 "Context Root": "/CrudController"

 }

]

 }

}]]

[2019-03-05T17:33:43.557-0500] [] [INFO] [] [PayaraMicro] [tid: _ThreadID=1 _

ThreadName=main] [timeMillis: 1551825223557] [levelValue: 800] [[

Payara Micro URLs:

http://pop-os.localdomain:8180/CrudController

'CrudController' REST Endpoints:

GET /CrudController/webresources/application.wadl

OPTIONS /CrudController/webresources/customercontroller

POST /CrudController/webresources/customercontroller

]]

[2019-03-05T17:33:43.557-0500] [] [INFO] [] [PayaraMicro] [tid: _ThreadID=1

_ThreadName=main] [timeMillis: 1551825223557] [levelValue: 800] Payara Micro

5.191 #badassmicrofish (build 94) ready in 7,922 (ms)

Demystifying Microservices for Jakarta EE Developers

16

Since in this case we implemented some RESTful web services using JAX-RS, Payara Micro includes
the endpoints for our services in its output.

Now that we have successfully deployed our controller service, we are ready to go through the final
component of our application, the persistence service.

The Persistence Service
Our persistence service is a JAX-RS RESTful web service, it is a thin wrapper over a class imple-
menting the DAO design pattern.

package fish.payara.crudpersistence.service;

//imports omitted for brevity

@ApplicationScoped

@Path("customerpersistence")

public class CustomerPersistenceService {

 @Context

 private UriInfo uriInfo;

 @Inject

 private CrudDao customerDao;

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 public Response create(Customer customer) {

 try {

 customerDao.create(customer);

 } catch (Exception e) {

 return Response.serverError().build();

 }

 return Response.created(uriInfo.getAbsolutePath()).build();

 }

}

Just like in our Controller service, there is no need to convert the JSON string we receive to Java
code, this is done automatically under the covers. Our create() method is invoked when the con-
troller service sends an HTTP POST request to the persistence service, this method simply invokes a
create() method on a class implementing the DAO design pattern. Our persistence service returns
an HTTP response 201 (Created), if everything goes well, if the DAO’s create() method throws an
exception, then our service returns an HTTP error 500 (Internal Server Error).

Demystifying Microservices for Jakarta EE Developers

17

Notice that the signature of our create() method matches the signature of the
method of the same name in our CustomerPersistenceClient interface, this is
necessary so that the MicroProfile REST client API can successfully generate the REST
client code of our service.

Our DAO is implemented as a CDI managed bean, using JPA to insert data into the database.

package fish.payara.crudpersistence.dao;

//imports omitted for brevity`

@ApplicationScoped

@Transactional

public class CrudDao {

 @PersistenceContext(unitName = "CustomerPersistenceUnit")

 private EntityManager em;

 public void create(Customer customer) {

 em.persist(customer);

 }

}

Our DAO couldn’t be much simpler, it implements a single method that invokes the persist()
method on an injected instance of EntityManager.

In our persistence service project, the Customer class is a trivial JPA entity

We now deploy our persistence service as usual.

java -jar payara-micro.jar --port 8280 --noCluster –deploy /path/to/

CrudPersistence.war

Demystifying Microservices for Jakarta EE Developers

18

Examining Payara Micro’s output we can see that our persistence service was deployed successfully.

[2019-03-05T19:11:05.630-0500] [] [INFO] [AS-WEB-GLUE-00172] [javax.enterprise.

web] [tid: _ThreadID=1 _ThreadName=main] [timeMillis: 1551831065630]

[levelValue: 800] Loading application [CrudPersistence] at [/CrudPersistence]

[2019-03-05T19:11:05.672-0500] [] [INFO] [] [PayaraMicro] [tid: _ThreadID=1 _

ThreadName=main] [timeMillis: 1551831065672] [levelValue: 800] [[

{

 "Instance Configuration": {

 "Host": "pop-os.localdomain",

 "Http Port(s)": "8280",

 "Https Port(s)": "",

 "Instance Name": "payara-micro",

 "Instance Group": "no-cluster",

 "Deployed": [

 {

 "Name": "CrudPersistence",

 "Type": "war",

 "Context Root": "/CrudPersistence"

 }

]

 }

}]]

[2019-03-05T19:11:05.679-0500] [] [INFO] [] [PayaraMicro] [tid: _ThreadID=1 _

ThreadName=main] [timeMillis: 1551831065679] [levelValue: 800] [[

Payara Micro URLs:

http://pop-os.localdomain:8280/CrudPersistence

'CrudPersistence' REST Endpoints:

GET	 /CrudPersistence/webresources/application.wadl

POST	 /CrudPersistence/webresources/customerpersistence

]]

[2019-03-05T19:11:05.679-0500] [] [INFO] [] [PayaraMicro] [tid: _ThreadID=1

_ThreadName=main] [timeMillis: 1551831065679] [levelValue: 800] Payara Micro

5.191 #badassmicrofish (build 94) ready in 11,718 (ms)

Demystifying Microservices for Jakarta EE Developers

19

Now that we have deployed all three components of our application, we are ready to see it in action.

Once the user enters some data and clicks the submit button, we should see a “success” message
at the top of our page.

If we take a look at the database, we should see that the user-entered data was persisted
successfully.

Demystifying Microservices for Jakarta EE Developers

20

As shown by our example code, developing applications following a microservices architecture in
Jakarta EE is very simple, it doesn’t require any special knowledge, microservices are developed
using standard Jakarta EE APIs and deployed to a lightweight runtime. If you are familiar with Jakarta
EE, it is likely that very little if any of the example code we showed is new to you.

Free Functionality Provided by MicroProfile

Just by including the MicroProfile dependency for our application, we get a lot of functionality for
free. The MicroProfile Open API can automatically generate documentation for our microservices,
the Open Tracing API can generate tracing information in server logs to allow correlating micro-
service invocations, and the Health API provides a health endpoint so that tools can automatically
check application health. All three APIs allow us to optionally customize their functionality to meet
our specific requirements, but the basic functionality is available without us having to write a single
line of code.

Free Documentation by MicroProfile Open API
The MicroProfile Open API will provide URL documenting our microservices, without us having to
write a single extra line of code, Open API will scan our JAX-RS annotations, and generate documen-
tation, all we need to do is point the browser to the /openapi context root of our instance of Payara
Micro. For example, the instance of Payara Micro where we deployed our Controller microservice is
listening on port 8180, to view the generated documentation, we would point our browser to http://
localhost:8180/openapi.

http://localhost:8180/openapi
http://localhost:8180/openapi

Demystifying Microservices for Jakarta EE Developers

21

The generated documentation provides useful information about our microservice, such as a descrip-
tion of the operations in our microservice, along with a schema of the expected request body, and
the response, all of this without us having to add a single line of code to our application.

Demystifying Microservices for Jakarta EE Developers

22

Customizing API Documentation

We can easily customize the generated documentation by using annotations provided by MicroProfile,
for example, if we wanted to add a summary and detailed description for the “addCustomer” oper-
ation provided by our CrudController class, we could simply annotate it with the @Operation
annotation, as follows:

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 @Operation(summary = "Add a customer to the database",

 description = "Add a customer to the database based"

 + " on the JSON representation of the customer")

 public Response addCustomer(Customer customer) throws

 URISyntaxException {

 Response response = null;

 Response persistenceServiceResponse;

 …

 }

The generated documentation would then be updated accordingly.

Demystifying Microservices for Jakarta EE Developers

23

Powerful Request Tracing by MicroProfile OpenTracing
When debugging microservices, it is not always clear which microservice in our application may be
causing an issue. Since microservices are deployed independently, each micro service has its own
log file. The OpenTracing API generates output that allows us to correlate micro services invocations
with one another, which greatly helps debugging complete operations. To this effect, the MicroProfile
OpenTracing API automatically generates trace data from all corresponding services in a format
compatible any OpenTracing collector service or tool.

Payara Micro’s implementation of MicroProfile OpenTracing API uses an internal service called the
Request Tracing Service to generate trace data in real time. Once this service is enabled, trace data
will be generated and broadcasted to any compatible OpenTracing collectors. You can enable this
service when launching a new instance from the command line like this:

java -jar payara-micro.jar –enableRequestTracing --requestTracingThresholdValue

25 --requestTracingThresholdUnit MICROSECONDS --deploy /path/to/CrudController.

war

As seen in the command sample, not only is the request tracing service is enabled, but it is configured
to gather trace data of all operations that exceed 25 microseconds. By default, tracing data will be
printed out to the instance’s log output:

[2019-03-14T05:11:24.039-0400] [] [INFO] [] [fish.payara.nucleus.notification.

log.LogNotifierService] [tid: _ThreadID=30 _ThreadName=http-thread-pool::http-

listener(2)] [timeMillis: 1552554684039] [levelValue: 800] [[

Request execution time: 1003(ms) exceeded the acceptable threshold -

{

 “traceSpans”: [

 {

 “operationName”: “processContainerRequest”,

 “spanContext”: {

 “spanId”: “721fb7d3-cbfb-4548-9ea4-eb124d107d24”,

 “traceId”: “5f4c72fb-a791-4a9f-9a5d-8a78fa600a1d”

 },

 “startTime”: “2019-03-14T05:11:23.034-04:00[America/New_York]”,

 “endTime”: “2019-03-14T05:11:24.037-04:00[America/New_York]”,

 “traceDuration”: “1003000000”,

 “spanTags”: [{ “Server”: “server” }, { “Domain”: “domain1” }]

 },

 {

 “operationName”: “processWebserviceRequest”,

 “spanContext”: {

https://opentracing.io/

Demystifying Microservices for Jakarta EE Developers

24

 “spanId”: “f849ed14-d546-4e82-8955-a2871ff8083b”,

 “traceId”: “5f4c72fb-a791-4a9f-9a5d-8a78fa600a1d”

 },

 “startTime”: “2019-03-14T05:11:23.036-04:00[America/New_York]”,

 “endTime”: “2019-03-14T05:11:24.036-04:00[America/New_York]”,

 “traceDuration”: “1000000000”,

 “spanTags”: [

 { “referer”: “[http://localhost:8080/CrudView/]” },

 { “content-length”: “[71]” },

 { “accept-language”: “[en-US,en;q=0.5]” },

 { “origin”: “[http://localhost:8080]” },

 { “Method”: “POST” },

 {

 “URL”: “http://localhost:8180/CrudController/webresources/

customercontroller/”

 },

 { “accept”: “[application/json, text/javascript, */*;q=0.01]” },

 { “ResponseStatus”: “200” },

 { “host”: “[localhost:8180]” },

 { “content-type”: “[application/json]” },

 { “connection”: “[keep-alive]” },

 { “accept-encoding”: “[gzip, deflate]” },

 {

 “user-agent”: “[Mozilla/5.0 (X11; Ubuntu; Linux x86_64;rv:65.0)

Gecko/20100101 Firefox/65.0]”

 }

],

 “references”: [

 {

 “spanContext”: {

 “spanId”: “721fb7d3-cbfb-4548-9ea4-eb124d107d24”,

 “traceId”: “5f4c72fb-a791-4a9f-9a5d-8a78fa600a1d”

 },

 “relationshipType”: “ChildOf”

 }

]

 },

 {

 “operationName”: “POST:fish.payara.crudcontroller.service.

CustomerControllerService.addCustomer”,

 “spanContext”: {

 “spanId”: “1694-5b76-794d-44e3-8052-e91e2e572f6f”,

 “traceId”: “5f4c72fb-a791-4a9f-9a5d-8a78fa600a1d”

Demystifying Microservices for Jakarta EE Developers

25

 },

 “startTime”: “2019-03-14T05:11:23.040-04:00[America/New_York]”,

 “endTime”: “2019-03-14T05:11:24.032-04:00[America/New_York]”,

 “traceDuration”: “992000000”,

 “spanTags”: [

 { “component”: “jaxrs” },

 { “span.kind”: “server” },

 {

 “http.url”: “http://localhost:8180/CrudController/webresources/

customercontroller/”

 },

 { “http.method”: “POST” }

],

 “references”: [

 {

 “spanContext”: {

 “spanId”: “f849ed14-d546-4e82-8955-a2871ff8083b”,

 “traceId”: “5f4c72fb-a791-4a9f-9a5d-8a78fa600a1d”

 },

 “relationshipType”: “ChildOf”

 }

]

 }

]

}

By design, trace data is structured as a set of spans (each one identified with a unique ID), and each
span represents a separate service unit/method of the complete trace. OpenTracing collectors will
collate all spans by matching the corresponding traceId that is part of the context data of each
span. Now, a good question you might ask is, how useful is this trace data? The answer is simple:
A lot! the MicroProfile OpenTracing runtime gathers information about each span start/end times,
duration, HTTP invocation and response data, etc.

However, reviewing trace data in a plain text log is not a sustainable solution, right? In a real-world
scenario, distributed tracing systems like Jaeger or Zipkin are used to gather and visualize trace date
in real-time to allow proper debugging of our microservice operations. Jaeger is one of the most
popular solutions in the market due to its simplicity and extensibility, so we’ll be using this tool to
showcase how trace data is gathered automatically.

To integrate Jaeger with Payara Micro, it is necessary to provide a valid io.opentracing.Tracer
component implementation that delegates the trace data collecting to Jaeger. This implementation
must have a no-args constructor as well.

Demystifying Microservices for Jakarta EE Developers

26

For the sake of simplicity, there’s an open source project named ecosystem-jaeger-
tracing which already has a straightforward implementation of a Jaeger wrapper
class. To use it, clone the project locally and build it. By default, all trace data will
be logged under the jaeger-test service name. We’ll need the resulting jaeger-
tracer-lib-1.0-jar-with-dependencies artifact.

First, let’s run Jaeger locally. Jaeger is a collection of applications, so the best way to run it for testing
purposes is to spawn a new docker container:

docker run -d --name jaeger \

 -e COLLECTOR_ZIPKIN_HTTP_PORT=9411 \

 -p 5775:5775/udp \

 -p 6831:6831/udp \

 -p 6832:6832/udp \

 -p 5778:5778 \

 -p 16686:16686 \

 -p 14268:14268 \

 -p 14250:14250 \

 -p 9411:9411 \

 jaegertracing/all-in-one:1.19

This will spawn a new docker container prepared with all Jaeger processes and ready to collect trace
data. Next, we’ll restart our CrudController service to both enable request tracing and configure
the corresponding Jaeger OpenTracing wrapper implementation as an added library as well:

java -jar payara-micro.jar –noCluster –port 8180 –deploy /path/to/

CrudController.war –enablerequesttracing –addLibs /path/to/jaeger-tracer-lib-

1.0-jar-with-dependencies.jar

As soon as our microservice is ready, test the customer create form again. After the operation is com-
pleted, let’s head to Jaeger’s UI located at http://localhost:16686/. Let’s select the jaeger-test
service and click the Find Traces button. The following results will be shown:

http://localhost:16686/

Demystifying Microservices for Jakarta EE Developers

27

 You can see that there is one trace for the addCustomer method that corresponds to two separate
spans, which you can inspect by clicking on the trace:

The first span contains information about the complete scope of the addCustomer method, while
the second span represents the call to the CustomerPersistenceService located in our second
microservice. You can quickly glance information about the HTTP methods called, their duration,
responses, which processes were affected and so much more!

Demystifying Microservices for Jakarta EE Developers

28

Free Health Check via the MicroProfile Health API
Many cloud providers and container orchestration tools periodically check the health of deployed
applications via pre-determined endpoints, these tools can then automatically discard an “unhealthy”
container and start a new one, or automatically manage “unhealthy” applications in a way that
doesn’t disrupt overall user experience.

The MicroProfile Health API provides two health endpoints ready to be used by these orchestration
tools, which are easy to configure and available to any applications developed with this API. These
endpoints allow services to find out if an application is effectively UP or DOWN. The API allows the
definition of 2 probes:

•	 Readiness probes, which define whether an application is ready to process requests or not.
This should help complex environment orchestrators to define a proper dependency order.

•	 Liveness probes, which establishes if the application is running. When the probe fails, the
application’s runtime can be either restarted or terminated.

Customizing Health Checks

By default, MicroProfile Health reports if an application is running properly, however it has no way
of knowing if any resources our application depends on are up and running.

For example, even if our database is not available, by default the API would report a status of UP
for our CrudPersistence service. If we want to add a check for database availability, we need to
add custom code. To this effect, we’ll define a liveness check:

package fish.payara.crudpersistence.healthcheck.database;

//Imports omitted for brevity

@Liveness

@ApplicationScoped

Demystifying Microservices for Jakarta EE Developers

29

public class CrudPersistenceHealthCheck implements HealthCheck {

	 @Inject

	 private CrudDao crudDao;

	 @Override

	 public HealthCheckResponse call(){

		 boolean valid;

		 try {

			 valid = crudDao.checkDatabaseConnection();

 		 } catch (Throwable e) {

			 valid = false;

		 }

		 if (valid) {

			 return HealthCheckResponse.named(

 				 CrudPersistenceHealthCheck.class.getSimpleName()).

 				 up().build();

		 } else {

			 return HealthCheckResponse.named(

 				 CrudPersistenceHealthCheck.class.getSimpleName()).

 				 down().build();

		 }

	 }

}

As can be seen in the example, to write custom health checks, we need to write an application scoped
CDI bean, this bean must be annotated with either the @Liveness or @Readiness annotation and
must implement the HealthCheck interface. This interface has a single method named call(),
which takes no arguments and returns an instance of HealthCheckResponse, which indicates the
outcome of the health probe in question.

In our example, we added a method to our DAO which checks that a valid connection to the database
can be established. If this is the case, the response is built with a positive UP status, and if not, the
DOWN status is used instead.

After deploying the application, we can check if the database is up by checking the /health/
liveness endpoint of the Payara Micro instance where we deployed our persistence microservice:

Demystifying Microservices for Jakarta EE Developers

30

If we manually stop the database, then check the same endpoint again, it correctly reports that the
database is down.

Demystifying Microservices for Jakarta EE Developers

31

Use Existing Java EE Knowledge to Develop
Microservices and Deploy to Payara Micro

As we can see, Jakarta EE is quite suitable for microservices development. Jakarta EE developers
can leverage their existing knowledge to develop a microservices architecture and deploy to modern,
lightweight runtimes such as Payara Micro. Additionally, it isn’t necessary to “throw the baby with
the bath water” so to speak, when migrating to micro services. Traditional Jakarta EE applications
can interact with microservices quite well, as well as can be refactored iteratively into a microser-
vice-oriented architecture when it makes sense.

Whether tackling one of the previously mentioned scenarios, Jakarta EE developers can leverage their
existing skills for the task at hand, simplifying the effort and cost needed for the overall transition.

Demystifying Microservices for Jakarta EE Developers

32

sales@payara.fish +44 207 754 0481 www.payara.fish

  

Payara Services Ltd 2020 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

About Payara Micro

Payara Micro Enterprise is the lightweight middleware platform of choice for containerized Jakarta
EE (Java EE) application deployments. Less than 70MB, Payara Micro requires no installation, con-
figuration, or code rewrites – so you can build and deploy a fully working app within minutes.

Compatible with Eclipse MicroProfile, Payara Micro is the microservices-ready version of Payara
Server. You can run war files from the command line without any application server installation.
Automatic and elastic clustering makes Payara Micro the platform of choice for running Jakarta EE
(Java EE) applications in a modern virtualized infrastructure.

Payara Micro also comes with a Java API to embed and launch from your own Java applications.

Learn more about Payara Micro here: https://www.payara.fish/products/payara-micro/

About the Author

David Heffelfinger is a Java Champion and Apache NetBeans committer, as well as an independent
consultant focusing on Java EE. He is a frequent speaker at Java conferences and is the author of
several books on Java and related technologies, such as “Java EE 8 Application Development”,
“Java EE 7 with GlassFish 4 Application Server” and others.

David was named by TechBeacon as one of 39 Java leaders and experts to follow on Twitter. You can
follow David on Twitter at @ensode.

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/products/payara-micro/
https://twitter.com/ensode

	What are Microservices?
	What is Jakarta EE?
	Can Jakarta EE do Microservices?
	MicroProfile
	Microservices Advantages
	Microservices Disadvantages

	Migrating to Microservices
	Iterative Refactoring
	Partial Refactoring
	Implementing New Application Requirements as Microservices

	Microservices Examples using Payara Micro
	Developing Microservices Client Code
	The Controller Service
	The Persistence Service

	Free Functionality Provided by MicroProfile
	Free Documentation by MicroProfile Open API
	Customizing API Documentation

	Powerful Request Tracing by MicroProfile OpenTracing
	Free Health Check via the MicroProfile Health API
	Customizing Health Checks

	Use Existing Java EE Knowledge to Develop Microservices and Deploy to Payara Micro
	About Payara Micro
	About the Author

